2024/5/21
豆瓣图书评论数据爬取。以《平凡的世界》、《都挺好》等为分析对象,编写程序爬取豆瓣读书上针对该图书的短评信息,要求:
(1)对前3页短评信息进行跨页连续爬取;
(2)爬取的数据包含用户名、短评内容、评论时间、评分和点赞数(有用数);
(3)能够根据选择的排序方式(热门或最新)进行爬取,并分别针对热门和最新排序,输出前10位短评信息(包括用户名、短评内容、评论时间、评分和点赞数)。
(4)根据点赞数的多少,按照从多到少的顺序将排名前10位的短评信息输出;
import re from collections import Counter import requests from lxml import etree import pandas as pd import jieba import matplotlib.pyplot as plt from wordcloud import WordCloud headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.54 Safari/537.36 Edg/101.0.1210.39" } comments_list = [] words_list = [] def clean_text(text): text = re.sub(r"[\n”“|,,;;''/?! 。的了是]", "", text) text = re.sub(r"^\d+::", "", text) text = re.sub( r"(https?://)?([a-zA-Z0-9]+)(\.[a-zA-Z0-9]+)(\.[a-zA-Z0-9]+)*(/[a-zA-Z0-9]+)*", "", text, re.IGNORECASE) text = re.sub(u"年|月|日|周一|周二|周三|周四|周五|周六", "", text) text = re.sub(r"[^a-zA-Z]\d+", "", text) text = re.sub(r"\s+", "", text) return text def extract_comments(url): resp = requests.get(url, headers=headers).text html = etree.HTML(resp) comment_list = html.xpath(".//div[@class='comment']") for comment in comment_list: username = comment.xpath(".//span[@class='comment-info']/a/text()")[0] content = comment.xpath(".//p[@class='comment-content']/span[@class='short']/text()")[0].strip() words_list.extend([clean_text(word) for word in jieba.cut(content, cut_all=False, HMM=False) if len(clean_text(word)) >= 2]) time = comment.xpath(".//span[@class='comment-info']/a/text()")[1] mark = comment.xpath(".//span[@class='comment-info']/span/@title") score = 0 if len(mark) == 0 else 5 if mark[0] == "力荐" else 4 if mark[0] == "推荐" else 3 if mark[0] == "还行" else 2 if mark[0] == "较差" else 1 likes = int(comment.xpath(".//span[@class='comment-vote']/span[@class='vote-count']/text()")[0]) comments_list.append([username, content, time, score, likes]) def generate_wordcloud(words): text = ' '.join(words) wordcloud = WordCloud(background_color='white', width=1000, height=700, font_path='simhei.ttf', margin=10).generate(text) plt.imshow(wordcloud) plt.axis("off") plt.show() wordcloud.to_file('wordcloud.png') print("请选择以下选项:") print(" 1.热门评论") print(" 2.最新评论") selected_option = int(input()) if selected_option == 1 or selected_option == 2: comments_list.clear() words_list.clear() for i in range(0, 60, 20): sort_type = "new_score" if selected_option == 1 else "time" url = f"https://book.douban.com/subject/10517238/comments/?start={i}&limit=20&status=P&sort={sort_type}" extract_comments(url) columns = ['用户名', '短评内容', '评论时间', '评分', '点赞数'] df = pd.DataFrame(comments_list, columns=columns) print("前10位短评信息:") print(df.head(10)) print("点赞数前10位的短评信息:") df_sorted = df.sort_values(by='点赞数', ascending=False) print(df_sorted.head(10)) generate_wordcloud(words_list) else: print("无效选项,请重新运行程序并选择1或2。")