概率统计应用题(二)
题目来源:AI研习社
问题:24个人,美人至少养一种宠物,养鸟、狗、鱼、猫的分别为13、5、10、9人,同时养鸟和狗的2人,同时养鸟和鱼、鸟和猫、鱼和猫的各为4人,养狗的既不养猫也不养鱼。问只养一种宠物的总共几人?同时养鸟鱼猫的几人?
解:记养鸟为事件A,养狗为事件B,养鱼为事件C,养猫为事件D。
由题意有,$n\left ( A \right )= 13$,$n\left ( B \right )= 5$,$n\left ( C \right )= 10$,$n\left ( D \right )= 9$,$n\left ( AB \right )= 2$,$n\left ( AC \right )= n\left ( AD \right )= n\left ( CD \right )= 4$,$n\left ( BC \right )= n\left ( BD \right )= 0$
下求$n\left ( 只养一种动物 \right )$和 $n\left ( ACD \right )$:
$n\left ( A \right ) + n\left ( B \right ) + n\left ( C \right ) + n\left ( D \right ) - n\left ( AB \right ) - n\left ( AC \right ) - n\left ( AD\right ) - n\left ( CD \right ) + n\left ( ACD \right )= 24 $
$\Rightarrow n\left ( ACD \right )= 1$
$\because n\left ( 只养一种动物 \right )= n\left ( 只养一种动物 \right )= n\left ( A\bar{B}\bar{C}\bar{D} \right ) + n\left ( \bar{A}B\bar{C}\bar{D} \right ) + n\left ( \bar{A}\bar{B}C\bar{D} \right ) + n\left ( \bar{A}\bar{B}\bar{C}D \right )$
$n\left ( A\bar{B}\bar{C}\bar{D} \right )= n\left ( A \right ) - n\left ( AB \right ) - n\left ( AC \right ) - n\left ( AD \right ) + n\left ( ACD \right )= 13 -2 - 4 - 4 + 1= 4$
$n\left ( \bar{A}B\bar{C}\bar{D} \right )= n\left ( B \right ) - n\left ( AB \right )= 5 - 2= 3$
$n\left ( \bar{A}\bar{B}C\bar{D} \right )= n\left ( C \right ) - n\left ( AC \right ) - n\left ( CD \right ) + n\left ( ACD \right )= 10 - 4 - 4 + 1= 3$
$n\left ( \bar{A}\bar{B}\bar{C}D \right )=n\left ( D \right ) - n\left ( AC \right ) - n\left ( CD \right ) + n\left ( ACD \right )= 9 - 4 - 4 + 1= 2$
$\therefore n\left ( 只养一种动物 \right )= 4 + 3 + 3 + 2= 12$
所以,只养一种宠物的总共12人,同时养鸟鱼猫的1人。

浙公网安备 33010602011771号