概率统计应用题(二)

题目来源:AI研习社

 

问题:24个人,美人至少养一种宠物,养鸟、狗、鱼、猫的分别为13、5、10、9人,同时养鸟和狗的2人,同时养鸟和鱼、鸟和猫、鱼和猫的各为4人,养狗的既不养猫也不养鱼。问只养一种宠物的总共几人?同时养鸟鱼猫的几人?

 

解:记养鸟为事件A,养狗为事件B,养鱼为事件C,养猫为事件D。

  由题意有$n\left ( A \right )= 13$,$n\left ( B \right )= 5$,$n\left ( C \right )= 10$,$n\left ( D \right )= 9$,$n\left ( AB \right )= 2$,$n\left ( AC \right )= n\left ( AD \right )= n\left ( CD \right )= 4$,$n\left ( BC \right )= n\left ( BD \right )= 0$

  下求$n\left ( 只养一种动物 \right )$ $n\left ( ACD \right )$

  $n\left ( A \right ) + n\left ( B \right ) + n\left ( C \right ) + n\left ( D \right ) - n\left ( AB \right ) - n\left ( AC \right ) - n\left ( AD\right ) - n\left ( CD \right ) + n\left ( ACD \right )= 24 $

  $\Rightarrow  n\left ( ACD \right )= 1$

  $\because  n\left ( 只养一种动物 \right )= n\left ( 只养一种动物 \right )= n\left ( A\bar{B}\bar{C}\bar{D} \right ) + n\left ( \bar{A}B\bar{C}\bar{D} \right ) + n\left ( \bar{A}\bar{B}C\bar{D} \right ) + n\left ( \bar{A}\bar{B}\bar{C}D \right )$

  $n\left ( A\bar{B}\bar{C}\bar{D} \right )= n\left ( A \right ) -  n\left ( AB \right ) - n\left ( AC \right ) - n\left ( AD \right ) + n\left ( ACD \right )= 13 -2 - 4 - 4 + 1= 4$

  $n\left ( \bar{A}B\bar{C}\bar{D} \right )= n\left ( B \right ) - n\left ( AB \right )= 5 - 2= 3$

  $n\left ( \bar{A}\bar{B}C\bar{D} \right )= n\left ( C \right ) - n\left ( AC \right ) - n\left ( CD \right ) + n\left ( ACD \right )= 10 - 4 - 4 + 1= 3$

  $n\left ( \bar{A}\bar{B}\bar{C}D \right )=n\left ( D \right ) - n\left ( AC \right ) - n\left ( CD \right ) + n\left ( ACD \right )= 9 - 4 - 4 + 1= 2$

  $\therefore n\left ( 只养一种动物 \right )= 4 + 3 + 3 + 2= 12$

  所以,只养一种宠物的总共12人,同时养鸟鱼猫的1人。

  

posted @ 2020-06-09 19:04  敲鼓  阅读(267)  评论(0)    收藏  举报