Trapping Rain Water
Q:
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.

The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
A:
题目相当的经典,先找到最高点h,然后从最高点h向左找该点左边的最高点l,算出两点之间能容纳的水量,然后将h置为l,继续找l左边的最高点,一直找到l为0为止。
用同样的方法从h向右找。
好了,方法知道了,很明显,我们如果知道了每个点左边的最高点以及右边的最高点,这个题就很easy了。
时间复杂度o(n), 空间复杂度o(n)
class Solution { public: int trap(int A[], int n) { // Start typing your C/C++ solution below // DO NOT write int main() function if (n <= 2) return 0; int result = 0; int* highest_pos_l = new int[n]; int* highest_pos_r = new int[n]; highest_pos_l[0] = 0; for (int i = 1; i < n; ++i) { highest_pos_l[i] = A[highest_pos_l[i - 1]] >= A[i - 1] ? highest_pos_l[i - 1] : i - 1; } highest_pos_r[n - 1] = n - 1; for (int i = n - 2; i >=0; --i) { highest_pos_r[i] = A[highest_pos_r[i + 1]] >= A[i + 1] ? highest_pos_r[i + 1] : i + 1; } int highest_pos = A[highest_pos_r[0]] > A[0] ? highest_pos_r[0] : 0; int left_pos = highest_pos_l[highest_pos]; int right_pos = highest_pos_r[highest_pos]; int pre_pos = highest_pos; while (pre_pos != 0) { for (int i = pre_pos - 1; i > left_pos; --i) { result += A[left_pos] - A[i]; } int tmp = pre_pos; pre_pos = left_pos; left_pos = highest_pos_l[tmp]; } pre_pos = highest_pos; while (pre_pos != n - 1) { for (int i = pre_pos + 1; i < right_pos; ++i) { result += A[right_pos] - A[i]; } int tmp = pre_pos; pre_pos = right_pos; right_pos = highest_pos_r[tmp]; } delete [] highest_pos_l; delete [] highest_pos_r; return result; } };
Passion, patience, perseverance, keep it and move on.

浙公网安备 33010602011771号