POI2009 KON-Ticket Inspector

题目链接

Description

一辆火车依次经过 \(n\) 个车站,顺序是 \(1, 2, 3, ..., n - 1, n\)。给定 \(A_{i, j}\) 表示从 \(i\) 站上车,\(j\) 站下车的个数。

\(K\) 次在每站操作后的检票机会,问最多能检票的多少不同的人。

Solution

这相当于给你 \(\dfrac{n^2}{2}\) 条线段(对于 \(A_{i, j}\) 而言对应的线段是 \([i, j - 1]\),因为选的点是在那站后,下车的就没了),每个线段有个权值,让你选择 \(K\) 个点,使得 \(K\) 个点所涉及的线段(重复的算一次)的权值和最大。

考虑 DP,用代表元计数法,考虑把每个线段的贡献记录在他那条线段上有的第一个点上。

状态设计

\(f_{i, j}\) 为前 \(i\) 个车站,已经检票了 \(j\) 次,并且在第 \(i\) 个车站后检票的最多人数

初始状态

\(f_{0, 0} = 0\),其余为负无穷(其实这里赋值与否没啥关系)。

状态转移

\(f_{i, j} = \max\{f_{k, j - 1} + val(k + 1, i)\}\)

其中 \(val(l, r)\) 表示在线段左端点在 \([l, r]\) 且右端点 $ \ge r$ 的线段个数,这个东西可以 \(O(N^3)\) 暴力预处理。

答案

\(ans = \max\{f[i][K]\}\)

时间复杂度

\(O(N^2K)\)

Tips

  • 大坑,可能造成贡献的点 $ < K$,这时候你就需要从剩下的站点中,选择一些字典序较小的来输出。

Code

#include <iostream>
#include <cstdio>

using namespace std;

const int N = 605, S = 55;

int n, tot, K, a[N][N], pre[N][S], val[N][N], cnt[N], f[N][S];

bool vis[N];

void print(int i, int j) {
	if (j == 0 || i == 0) return ;
	print(pre[i][j], j - 1);
	vis[i] = true;
	++tot;
}

int main() {
	scanf("%d%d", &n, &K);
	for (int i = 1; i <= n; i++) {
		for (int j = i + 1; j <= n; j++) scanf("%d", &a[i][j]);
	}

	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= n; j++) cnt[j] = 0;
		for (int j = i; j <= n; j++) {
			for (int k = j + 1; k <= n; k++) cnt[k - 1] += a[j][k];
			for (int k = n; k >= j; k--) val[i][j] += cnt[k];
		}
	}

	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= K; j++) {
			for (int k = 0; k < i; k++) {
				if (f[k][j - 1] + val[k + 1][i] > f[i][j]) {
					f[i][j] = f[k][j - 1] + val[k + 1][i];
					pre[i][j] = k;
				}
			}

		}
	}

	int ans = 0, p;
		for (int i = 1; i <= n; i++) if (f[i][K] > ans) ans = f[i][K], p = i;
	print(p, K);
	for (int i = 1; i <= n; i++) {
		if (vis[i]) printf("%d ", i);
		else if (tot < K) tot++, printf("%d ", i);
	}
	return 0;
}
posted @ 2020-03-14 14:53  DMoRanSky  阅读(129)  评论(0)    收藏  举报