线程池(c++)

//#include"ThreadPool.h"
#include<iostream>
#include<vector>
#include<queue>
#include<thread>
#include<mutex>
#include<condition_variable>
#include<future>
#include<functional>
#include<stdexcept>
using namespace std;


#pragma once
class ThreadPool
{
public:
	ThreadPool();
	ThreadPool(int threads);
	~ThreadPool();
	template<class F, class... Args>
	auto enqueue(F&& f, Args&&... args)->future<typename result_of<F(Args...)>::type>;
private:
	vector<thread> workers;
	queue<function<void()>> tasks;
	mutex queue_mutex;
	condition_variable condition;
	bool stop;
};



ThreadPool::ThreadPool()
{
	for (size_t i = 0; i < 3; i++)
	{
		workers.emplace_back(
			[this] {
			for (; ; )
			{
				function<void()>  task;
				{
					unique_lock<mutex> lock(this->queue_mutex);
					this->condition.wait(lock, [this] {return this->stop || !this->tasks.empty(); });
					if (this->stop && this->tasks.empty())return;
					task = move(this->tasks.front());
					this->tasks.pop();
				}
				task();
			}
		}
		);
	}
}


ThreadPool::~ThreadPool()
{
	{
		unique_lock<mutex> lock(queue_mutex);
		stop = true;
	}
	condition.notify_all();
	for (thread &worker : workers)
	{
		worker.join();
	}
}

ThreadPool::ThreadPool(int threads) :stop(false) {
	for (size_t i = 0; i < threads; i++)
	{
		workers.emplace_back(
			[this] {
			for (; ; )
			{
				function<void()>  task;
				{
					unique_lock<mutex> lock(this->queue_mutex);
					this->condition.wait(lock, [this] {return this->stop || !this->tasks.empty(); });
					if (this->stop && this->tasks.empty())return;
					task = move(this->tasks.front());
					this->tasks.pop();
				}
				task();
			}
		}
		);
	}
}

template<class F,class...Args>
auto ThreadPool::enqueue(F&& f, Args&&... args)->future<typename result_of<F(Args...)>::type>
{
	using return_type = typename result_of<F(Args...)>::type;
	auto task = make_shared<packaged_task<return_type()>>(bind(forward<F>(f),forward<Args>(args)...));
	future<return_type> res = task->get_future(); 
	{
		unique_lock<mutex> lock(queue_mutex);
		if (stop) {
			throw runtime_error("enqueue on stopped ThreadPool");
		}
		tasks.emplace([task]() {(*task)(); });
	}
	condition.notify_one();
	return res;
}


//template<class F, class... Args>
//auto ThreadPool::enqueue(F&& f, Args&&... args)-> std::future<typename std::result_of<F(Args...)>::type>
//{
//	using return_type = typename std::result_of<F(Args...)>::type;
//	//auto task = make_shared<packaged_task<return_type()>>(bind(forward<F>(f), forward<Args>(args)...));
//	std::packaged_task<return_type()> task(std::bind(std::forward<F>(f), std::forward<Args>(args)...));
//	std::future<return_type> res = task.get_future();
//	{
//		std::unique_lock<std::mutex> lock(queue_mutex);
//		tasks.push(std::move(task));
//	}
//	condition.notify_one();
//
//	return res;
//}


int main() {
	size_t t = 4;
	ThreadPool pool;
	vector<future<void>> results;
	for (int i = 0; i < 16; i++)
	{
		int copy_i = i;
		results.emplace_back(pool.enqueue([copy_i]() {
			cout << "Task " << copy_i << "  running on thread " << this_thread::get_id() << endl;
		}));
	}

	for  (auto  &res : results)
	{
		res.get();
	}

	cin.get();
	return 0;
}

  

posted @ 2024-03-26 19:34  dmfsimle  阅读(1)  评论(0)    收藏  举报