poj 折半搜索
poj2549 Sumsets
题目链接: http://poj.org/problem?id=2549
题意:给你一个含有n(n<=1000)个数的数列,问这个数列中是否存在四个不同的数a,b,c,d,使a+b+c=d;若存在则输出最大的d
思路:完全暴力的话O(n^4),会T,可以考虑双向搜索,公式变形为a+b=d-c;分别枚举a+b和c-d,将值和下标存在结构体中,再二分查找即可
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<set>
#include<vector>
#include<map>
using namespace std;
struct Z{
int s;
int x;
int y;
bool operator < (const Z& b)const
{
return s < b.s;
}
}z[1000005],m[1000005];
int n,a[1005];
bool ok(Z& a, Z& b)
{
return a.x != b.x && a.y != b.y && a.x != b.y && a.y != b.x;
}
int main(){
while((cin>>n)&&n!=0){
int ans=-536870912;
for(int i=0;i<n;i++)
cin>>a[i];
sort(a,a+n);
int k=0;
for(int i=0;i<n;i++)
for(int j=i+1;j<n;j++){
z[k].s=a[i]+a[j];
z[k].x=i;
z[k++].y=j;
}
int l=0;
for(int i=0;i<n;i++)
for(int j=i+1;j<n;j++){
m[l].s=a[i]-a[j];
m[l].x=i;
m[l++].y=j;
m[l].s=a[j]-a[i];
m[l].x=j;
m[l++].y=i;
}
sort(z,z+k);
for(int i=0;i<l;i++){
int d=lower_bound(z,z+k,m[i])-z;
if(ok(z[d],m[i])&&z[d].s==m[i].s)
ans=max(ans,z[d].s+a[m[i].y]);
}
if(ans!=-536870912)
cout<<ans<<endl;
else cout<<"no solution"<<endl;
}
}
poj3977 Subset
题目链接: http://poj.org/problem?id=3977
题意:给你一个含n(n<=35)个数的数组,让你在数组中选出一个非空子集,使其元素和的绝对值最小,输出子集元素的个数以及元素和的绝对值,若两个子集元素和相等,输出元素个数小的那个。
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
struct Z{
long long int x;
int y;
bool operator < (const Z& b)const
{
if(x!=b.x)
return x < b.x;
return y<b.y;
}
}a[300005],b[300005];
long long int c[40];
long long int abs1(long long int x){
if(x<0)
return -x;
return x;
}
int main(){
int n;
while((cin>>n)&&n!=0){
for(int i=0;i<300005;i++)
a[i].x=a[i].y=b[i].x=b[i].y=0;
long long int sum=1e17;
int ans=40;
for(int i=0;i<n;i++)
cin>>c[i];
int n1=n/2;
for(int i=0;i<1<<n1;i++){
for(int j=0;j<n1;j++){
if(i>>j&1&&(i!=0||j!=0)){
a[i-1].x+=c[j];
a[i-1].y++;
}
}
}
int n2=n-n1;
for(int i=0;i<(1<<n2);i++){
for(int j=0;j<n2;j++){
if(i>>j&1&&(i!=0||j!=0)){
b[i-1].x+=c[j+n1];
b[i-1].y++;
}
}
}
for(int i=0;i<(1<<n1)-1;i++){
if(abs1(a[i].x)<sum){
sum=abs1(a[i].x);
ans=a[i].y;
}
else if(abs1(a[i].x)==sum&&a[i].y<ans){
ans=a[i].y;
sum=abs1(a[i].x);
}
}
for(int i=0;i<(1<<n1)-1;i++)
a[i].x=-a[i].x;
for(int i=0;i<(1<<n2)-1;i++){
if(abs1(b[i].x)<sum){
sum=abs1(b[i].x);
ans=b[i].y;
}
else if(abs1(b[i].x)==sum&&b[i].y<ans){
ans=b[i].y;
sum=abs1(b[i].x);
}
}
sort(a,a+(1<<n1)-1);
sort(b,b+(1<<n2)-1);
for(int i=0;i<(1<<n1)-1;i++){
int t=lower_bound(b,b+(1<<n2)-1,a[i])-b;
if(t>0){
if(abs1(b[t-1].x-a[i].x)<sum){
sum=abs1(b[t-1].x-a[i].x);
ans=b[t-1].y+a[i].y;
}
else if(abs1(b[t-1].x-a[i].x)==sum&&b[t-1].y+a[i].y<ans){
sum=abs1(b[t-1].x-a[i].x);
ans=b[t-1].y+a[i].y;
}
}
if(t<(1<<n2)-1){
if(abs1(b[t].x-a[i].x)<sum){
sum=abs1(b[t].x-a[i].x);
ans=b[t].y+a[i].y;
}
else if(abs1(b[t].x-a[i].x)==sum&&b[t].y+a[i].y<ans){
sum=abs1(b[t].x-a[i].x);
ans=b[t].y+a[i].y;
}
}
}
cout<<sum<<" "<<ans<<endl;
}
}
poj2785 4 Values whose Sum is 0
题目链接: http://poj.org/problem?id=2785
挑战P160
题意:给你各有n个整数的四个数组,问从每个数列中取出一个数使四个数之和为0,问共有多少种取法,一个数列中有多个相同的数字时,将他们当成不同的数字看待,1<=n<=4000;
思路:完全暴力枚举O(n^4)肯定会超时,可以考虑拆成两半后枚举设四个数a+b+c+d=0,先将a+b所有组合存在一个数组中并排序O(n^2),再枚举c+d(O(n^2)),对于每个c+d,在a+b的数列中二分搜索-(c+d),总复杂度O(n^2*log n);
直接贴书上代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
int a[4005],b[4005],c[4005],d[4005],cd[16000005];
int main(){
int n;
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d%d%d%d",&a[i],&b[i],&c[i],&d[i]);
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
cd[i*n+j]=c[i]+d[j];
sort(cd,cd+n*n);
long long ans=0;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++){
int CD=-(a[i]+b[j]);
ans+=upper_bound(cd,cd+n*n,CD)-lower_bound(cd,cd+n*n,CD);
}
printf("%lld\n",ans);
}

浙公网安备 33010602011771号