2020-2021-1 20209311《Linux内核原理与分析》第四周作业

2020-2021-1 20209311《Linux内核原理与分析》第四周作业

一、实验三 跟踪分析Linux内核的启动过程

1.实验过程

使用实验楼的虚拟机打开shell,内核启动后进入menu程序:

cd ~/LinuxKernel/
qemu -kernel linux-3.18.6/arch/x86/boot/bzImage -initrd rootfs.img


要使用gdb跟踪调试内核,需要在打开menu时添加两个选项s、S:

qemu -kernel linux-3.18.6/arch/x86/boot/bzImage -initrd rootfs.img -s -S 
# 关于-s和-S选项的说明:
# 1. -S
#   -S freeze CPU at startup (use ’c’ to start execution)
# 2. -s
#   -s shorthand for -gdb tcp::1234 
# 若不想使用1234端口,则可以使用-gdb tcp:xxxx来取代-s选项


可以看到,-S选项阻止了cpu执行后续指令,-s的作用是打开1234端口号,供后续gdb调试使用。
打开gdb,进入目录后输入以下命令:

file linux-3.18.6/vmlinux
# 在gdb界面中targe remote之前加载符号表
target remote:1234
# 建立gdb和gdbserver之间的连接,按c 让qemu上的Linux继续运行
break start_kernel
# 断点的设置可以在target remote之前,也可以在之后

效果如图所示:

通过设置断点的方法,我们可以跟踪内核的启动过程。

2.实验分析

整个内核中,最关键的函数便是start_kernel函数,这个函数颇为复杂。start_kernel函数的代码如下:

asmlinkage __visible void __init start_kernel(void)
{
    char *command_line;
    char *after_dashes;

    /*
     * Need to run as early as possible, to initialize the
     * lockdep hash:
     */
    lockdep_init();
    set_task_stack_end_magic(&init_task);
    smp_setup_processor_id();
    debug_objects_early_init();

    /*
     * Set up the the initial canary ASAP:
     */
    boot_init_stack_canary();

    cgroup_init_early();

    local_irq_disable();
    early_boot_irqs_disabled = true;

/*
 * Interrupts are still disabled. Do necessary setups, then
 * enable them
 */
    boot_cpu_init();
    page_address_init();
    pr_notice("%s", linux_banner);
    setup_arch(&command_line);
    mm_init_cpumask(&init_mm);
    setup_command_line(command_line);
    setup_nr_cpu_ids();
    setup_per_cpu_areas();
    smp_prepare_boot_cpu();    /* arch-specific boot-cpu hooks */

    build_all_zonelists(NULL, NULL);
    page_alloc_init();

    pr_notice("Kernel command line: %s\n", boot_command_line);
    parse_early_param();
    after_dashes = parse_args("Booting kernel",
                  static_command_line, __start___param,
                  __stop___param - __start___param,
                  -1, -1, &unknown_bootoption);
    if (!IS_ERR_OR_NULL(after_dashes))
        parse_args("Setting init args", after_dashes, NULL, 0, -1, -1,
               set_init_arg);

    jump_label_init();

    /*
     * These use large bootmem allocations and must precede
     * kmem_cache_init()
     */
    setup_log_buf(0);
    pidhash_init();
    vfs_caches_init_early();
    sort_main_extable();
    trap_init();
    mm_init();

    /*
     * Set up the scheduler prior starting any interrupts (such as the
     * timer interrupt). Full topology setup happens at smp_init()
     * time - but meanwhile we still have a functioning scheduler.
     */
    sched_init();
    /*
     * Disable preemption - early bootup scheduling is extremely
     * fragile until we cpu_idle() for the first time.
     */
    preempt_disable();
    if (WARN(!irqs_disabled(),
         "Interrupts were enabled *very* early, fixing it\n"))
        local_irq_disable();
    idr_init_cache();
    rcu_init();
    context_tracking_init();
    radix_tree_init();
    /* init some links before init_ISA_irqs() */
    early_irq_init();
    init_IRQ();
    tick_init();
    rcu_init_nohz();
    init_timers();
    hrtimers_init();
    softirq_init();
    timekeeping_init();
    time_init();
    sched_clock_postinit();
    perf_event_init();
    profile_init();
    call_function_init();
    WARN(!irqs_disabled(), "Interrupts were enabled early\n");
    early_boot_irqs_disabled = false;
    local_irq_enable();

    kmem_cache_init_late();

    /*
     * HACK ALERT! This is early. We're enabling the console before
     * we've done PCI setups etc, and console_init() must be aware of
     * this. But we do want output early, in case something goes wrong.
     */
    console_init();
    if (panic_later)
        panic("Too many boot %s vars at `%s'", panic_later,
              panic_param);

    lockdep_info();

    /*
     * Need to run this when irqs are enabled, because it wants
     * to self-test [hard/soft]-irqs on/off lock inversion bugs
     * too:
     */
    locking_selftest();

#ifdef CONFIG_BLK_DEV_INITRD
    if (initrd_start && !initrd_below_start_ok &&
        page_to_pfn(virt_to_page((void *)initrd_start)) < min_low_pfn) {
        pr_crit("initrd overwritten (0x%08lx < 0x%08lx) - disabling it.\n",
            page_to_pfn(virt_to_page((void *)initrd_start)),
            min_low_pfn);
        initrd_start = 0;
    }
#endif
    page_cgroup_init();
    debug_objects_mem_init();
    kmemleak_init();
    setup_per_cpu_pageset();
    numa_policy_init();
    if (late_time_init)
        late_time_init();
    sched_clock_init();
    calibrate_delay();
    pidmap_init();
    anon_vma_init();
    acpi_early_init();
#ifdef CONFIG_X86
    if (efi_enabled(EFI_RUNTIME_SERVICES))
        efi_enter_virtual_mode();
#endif
#ifdef CONFIG_X86_ESPFIX64
    /* Should be run before the first non-init thread is created */
    init_espfix_bsp();
#endif
    thread_info_cache_init();
    cred_init();
    fork_init(totalram_pages);
    proc_caches_init();
    buffer_init();
    key_init();
    security_init();
    dbg_late_init();
    vfs_caches_init(totalram_pages);
    signals_init();
    /* rootfs populating might need page-writeback */
    page_writeback_init();
    proc_root_init();
    cgroup_init();
    cpuset_init();
    taskstats_init_early();
    delayacct_init();

    check_bugs();

    sfi_init_late();

    if (efi_enabled(EFI_RUNTIME_SERVICES)) {
        efi_late_init();
        efi_free_boot_services();
    }

    ftrace_init();

    /* Do the rest non-__init'ed, we're now alive */
    rest_init();
}

可以看到,start_kernel函数调用了一系列的初始化函数来完成内核本身的设置,包括trap_init函数初始化中断向量,mm_init函数初始化内存管理,sched_init函数初始化调度模块等,最后调用rest_init函数对剩余部分初始化。rest_init函数内容如下:

noinline void __ref rest_init(void)
{
    struct task_struct *tsk;
    int pid;
 
    rcu_scheduler_starting();
    /*
     * We need to spawn init first so that it obtains pid 1, however
     * the init task will end up wanting to create kthreads, which, if
     * we schedule it before we create kthreadd, will OOPS.
     */
    pid = kernel_thread(kernel_init, NULL, CLONE_FS);
    /*
     * Pin init on the boot CPU. Task migration is not properly working
     * until sched_init_smp() has been run. It will set the allowed
     * CPUs for init to the non isolated CPUs.
     */
    rcu_read_lock();
    tsk = find_task_by_pid_ns(pid, &init_pid_ns);
    set_cpus_allowed_ptr(tsk, cpumask_of(smp_processor_id()));
    rcu_read_unlock();
 
    numa_default_policy();
    pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);
    rcu_read_lock();
    kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
    rcu_read_unlock();
 
    /*
     * Enable might_sleep() and smp_processor_id() checks.
     * They cannot be enabled earlier because with CONFIG_PREEMPT=y
     * kernel_thread() would trigger might_sleep() splats. With
     * CONFIG_PREEMPT_VOLUNTARY=y the init task might have scheduled
     * already, but it's stuck on the kthreadd_done completion.
     */
    system_state = SYSTEM_SCHEDULING;
 
    complete(&kthreadd_done);
 
}

可以看到,rest_init函数创建了init内核线程和kthreadd内核线程,这两个线程会创建1、2号进程。

3.实验收获

0号进程是linux启动的第一个进程,运行在内核态,由系统自动创建。当系统完成初始化后,变为idle进程。
内核在调用start_kernel后,会创建两个内核线程———init和kthreadd。其中,init内核线程最终执行/sbin/init进程,变为所有用户态程序的根进程,即用户空间的init进程,称为1号进程;kthreadd内核线程变为所有内核态其他守护线程的父线程,称为2号进程。

二、Linux知识学习

1.“三大法宝”和“两把宝剑”

计算机的“三大法宝”指:

  • 存储程序计算机
  • 函数调用堆栈机制
  • 中断

操作系统的“两把宝剑”:

  • 中断上下文
  • 进程上下文
    操作系统的两把宝剑:一把是中断上下文的切换——保存现场和恢复现场;另一把是进程上下文的切换。不管是“三大法宝”还是“两把宝剑”,它们都和汇编语言有着密不可分的联系。

2.Linux内核源码的目录结构

  • arch:存放了CPU体系结构的相关代码,使Linux内核支持不同的CPU和体系结构。
  • block:存放Linux存储体系中关于块设备管理的代码。
  • crypto:存放常见的加密算法的C语言代码。
  • Documentation:存放一些文档。
  • drivers:驱动目录,存放了Linux内核支持的所有硬件设备的驱动源代码。
  • firmware:固件。
  • fs:文件系统,列出了Linux支持的各种文件系统的实现。
  • include:头文件目录,存放公共的头文件。
  • init:存放Linux内核启动时的初始化代码。
posted @ 2020-11-01 18:38  dkkk7  阅读(99)  评论(0编辑  收藏  举报