#!/usr/bin/env python
# -*- coding: utf-8 -*-
import rospy
import cv2
import numpy as np
from sensor_msgs.msg import Image
import cv_bridge
class FaceDetector:
def __init__(self):
rospy.on_shutdown(self.cleanup)
# 创建cv_bridge
self.bridge = cv_bridge.CvBridge()
self.image_pub = rospy.Publisher("cv_bridge_image", Image, queue_size=1)
self.image_sub = rospy.Subscriber("/usb_cam/image_raw", Image, self.image_callback, queue_size=1)
# self.image_sub = rospy.Subscriber("/camera/rgb/image_raw", Image, self.image_callback, queue_size=1)
# 获取haar特征的级联表的XML文件,文件路径在launch文件中传入
cascade_1 = rospy.get_param("~cascade_1", "~/catkin_ws/src/opencv/data/haar_detectors/haarcascade_frontalface_alt.xml")
cascade_2 = rospy.get_param("~cascade_2", "~/catkin_ws/src/opencv/data/haar_detectors/haarcascade_profileface.xml")
# 使用级联表初始化haar特征检测器
self.cascade_1 = cv2.CascadeClassifier(cascade_1)
self.cascade_2 = cv2.CascadeClassifier(cascade_2)
# 设置级联表的参数,优化人脸识别,可以在launch文件中重新配置
self.haar_scaleFactor = rospy.get_param("~haar_scaleFactor", 1.2)
self.haar_minNeighbors = rospy.get_param("~haar_minNeighbors", 2)
self.haar_minSize = rospy.get_param("~haar_minSize", 40)
self.haar_maxSize = rospy.get_param("~haar_maxSize", 60)
self.color = (50, 255, 50)
def image_callback(self, data):
# 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
frame = np.array(cv_image, dtype=np.uint8)
# 创建灰度图像
grey_image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 创建平衡直方图,减少光线影响
grey_image = cv2.equalizeHist(grey_image)
# 尝试检测人脸
faces_result = self.detect_face(grey_image)
# 在opencv的窗口中框出所有人脸区域
if len(faces_result) > 0:
for face in faces_result:
x, y, w, h = face
cv2.rectangle(cv_image, (x, y), (x + w, y + h), self.color, 2)
# 将识别后的图像转换成ROS消息并发布
self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8"))
def detect_face(self, input_image):
# 首先匹配正面人脸的模型
if self.cascade_1:
faces = self.cascade_1.detectMultiScale(input_image,
self.haar_scaleFactor,
self.haar_minNeighbors,
cv2.CASCADE_SCALE_IMAGE,
(self.haar_minSize, self.haar_maxSize))
# 如果正面人脸匹配失败,那么就尝试匹配侧面人脸的模型
if len(faces) == 0 and self.cascade_2:
faces = self.cascade_2.detectMultiScale(input_image,
self.haar_scaleFactor,
self.haar_minNeighbors,
cv2.CASCADE_SCALE_IMAGE,
(self.haar_minSize, self.haar_maxSize))
return faces
def cleanup(self):
print("强制结束程序。。")
cv2.destroyAllWindows()
if __name__ == '__main__':
try:
# 初始化ros节点
rospy.init_node("face_detector")
follower = FaceDetector()
rospy.loginfo("人脸识别已经启动。。。")
rospy.loginfo("请打开opencv节点订阅消息。。。")
rospy.spin()
except KeyboardInterrupt:
print("强制结束程序。。")
cv2.destroyAllWindows()