死磕ConcurrentHashMap 1.8源码解析

JDK1.8的实现已经摒弃了Segment的概念,而是直接用Node数组+链表+红黑树的数据结构来实现,并发控制使用Synchronized和CAS来操作,整个看起来就像是优化过且线程安全的HashMap,虽然在JDK1.8中还能看到Segment的数据结构,但是已经简化了属性,只是为了兼容旧版本。

// 最大容量:2^30=1073741824
private static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认初始值,必须是2的幕数
private static final int DEFAULT_CAPACITY = 16;
//
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
//
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
// 
private static final float LOAD_FACTOR = 0.75f;
// 链表转红黑树阀值,> 8 链表转换为红黑树
static final int TREEIFY_THRESHOLD = 8;
//树转链表阀值,小于等于6(tranfer时,lc、hc=0两个计数器分别++记录原bin、新binTreeNode数量,<=UNTREEIFY_THRESHOLD 则untreeify(lo))
static final int UNTREEIFY_THRESHOLD = 6;
//
static final int MIN_TREEIFY_CAPACITY = 64;
//
private static final int MIN_TRANSFER_STRIDE = 16;
//
private static int RESIZE_STAMP_BITS = 16;
// 2^15-1,help resize的最大线程数
private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
// 32-16=16,sizeCtl中记录size大小的偏移量
private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
// forwarding nodes的hash值
static final int MOVED     = -1; 
// 树根节点的hash值
static final int TREEBIN   = -2; 
// ReservationNode的hash值
static final int RESERVED  = -3; 
// 可用处理器数量
static final int NCPU = Runtime.getRuntime().availableProcessors();

table:用来存放Node节点数据的,默认为null,默认大小为16的数组,每次扩容时大小总是2的幂次方;
nextTable:扩容时新生成的数据,数组为table的两倍;
Node:节点,保存key-value的数据结构;
ForwardingNode:一个特殊的Node节点,hash值为-1,其中存储nextTable的引用。只有table发生扩容的时候,ForwardingNode才会发挥作用,作为一个占位符放在table中表示当前节点为null或则已经被移动
sizeCtl:控制标识符,用来控制table初始化和扩容操作的,在不同的地方有不同的用途,其值也不同,所代表的含义也不同
              负数代表正在进行初始化或扩容操作
             -1代表正在初始化
             -N 表示有N-1个线程正在进行扩容操作
             正数或0代表hash表还没有被初始化,这个数值表示初始化或下一次进行扩容的大小

Node

Node是ConcurrentHashMap存储结构的基本单元,继承于HashMap中的Entry,用于存储数据,源代码如下

static class Node<K,V> implements Map.Entry<K,V> {
    //链表的数据结构
    final int hash;
    final K key;
    //val和next都会在扩容时发生变化,所以加上volatile来保持可见性和禁止重排序
    volatile V val;
    volatile Node<K,V> next;
    Node(int hash, K key, V val, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.val = val;
        this.next = next;
    }
    public final K getKey()       { return key; }
    public final V getValue()     { return val; }
    public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
    public final String toString(){ return key + "=" + val; }
    //不允许更新value  
    public final V setValue(V value) {
        throw new UnsupportedOperationException();
    }
    public final boolean equals(Object o) {
        Object k, v, u; Map.Entry<?,?> e;
        return ((o instanceof Map.Entry) &&
                (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
                (v = e.getValue()) != null &&
                (k == key || k.equals(key)) &&
                (v == (u = val) || v.equals(u)));
    }
    //用于map中的get()方法,子类重写
    Node<K,V> find(int h, Object k) {
        Node<K,V> e = this;
        if (k != null) {
            do {
                K ek;
                if (e.hash == h &&
                    ((ek = e.key) == k || (ek != null && k.equals(ek))))
                    return e;
            } while ((e = e.next) != null);
        }
        return null;
    }
}

 put 方法

 public V put(K key, V value) {
        return putVal(key, value, false);
    }

    /** Implementation for put and putIfAbsent */
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        int hash = spread(key.hashCode());//两次hash,减少hash冲突,可以均匀分布
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            // 1)这里就是上面构造方法没有进行初始化,在这里进行判断,为null就调用initTable进行初始化,属于懒汉模式初始化
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {// 2)如果i位置没有数据,就直接无锁插入
               //利用CAS操作将元素插入到Hash表中
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            else if ((fh = f.hash) == MOVED) //3)如果在进行扩容,则先进行扩容操作
                tab = helpTransfer(tab, f);
            else {   // 4) 如果以上条件都不满足,那就要进行加锁操作,也就是存在hash冲突,锁住链表或者红黑树的头结点
                V oldVal = null;
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) { //表示该节点是链表结构  TreeBin的hash 是 -2 ??
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                //这里涉及到相同的key进行put就会覆盖原先的value
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                if ((e = e.next) == null) { //插入链表尾部
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) { //红黑树结构
                            Node<K,V> p;
                            binCount = 2;
                            //红黑树结构旋转插入
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {  //如果链表的长度大于8时就会进行红黑树的转换
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L, binCount); //统计size,并且检查是否需要扩容
        return null;
    }

这个put的过程很清晰,对当前的table进行无条件自循环直到put成功,可以分成以下六步流程来概述。

  1. 如果没有初始化就先调用initTable()方法来进行初始化过程
  2. 如果没有hash冲突就直接CAS插入
  3. 如果还在进行扩容操作就先进行扩容
  4. 如果存在hash冲突,就加锁来保证线程安全,这里有两种情况,一种是链表形式就直接遍历到尾端插入,一种是红黑树就按照红黑树结构插入,
  5. 最后一个如果该链表的数量大于阈值8,就要先转换成黑红树的结构,break再一次进入循环
  6. 如果添加成功就调用addCount()方法统计size,并且检查是否需要扩容

initTable

  private final Node<K,V>[] initTable() {
        Node<K,V>[] tab; int sc;
        while ((tab = table) == null || tab.length == 0) {
            if ((sc = sizeCtl) < 0) //表示其他线程已经在初始化了或者扩容了,则直接让出自己的CPU时间片
                Thread.yield(); // lost initialization race; just spin
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {  //通过cas操作,将sizeCtl替换为-1,标识当前线程抢占到了初始化资格
                try {
                    if ((tab = table) == null || tab.length == 0) {
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        @SuppressWarnings("unchecked")
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        table = tab = nt;
                        sc = n - (n >>> 2);
                    }
                } finally {
                    sizeCtl = sc;
                }
                break;
            }
        }
        return tab;
    }

 初始化方法initTable()的关键就在于sizeCtl,该值默认为0,如果在构造函数时有参数传入该值则为2的幂次方。该值如果 < 0,表示有其他线程正在初始化,则必须暂停该线程。如果线程获得了初始化的权限则先将sizeCtl设置为-1,防止有其他线程进入,最后将sizeCtl设置0.75 * n,表示扩容的阈值。

helpTransfer

 。。。

 get

public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    int h = spread(key.hashCode()); //计算两次hash
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (e = tabAt(tab, (n - 1) & h)) != null) {//读取首节点的Node元素
        if ((eh = e.hash) == h) { //如果该节点就是首节点就返回
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                return e.val;
        }
        //hash值为负值表示正在扩容,这个时候查的是ForwardingNode的find方法来定位到nextTable来
        //查找,查找到就返回
        else if (eh < 0)
            return (p = e.find(h, key)) != null ? p.val : null;
        while ((e = e.next) != null) {//既不是首节点也不是ForwardingNode,那就往下遍历
            if (e.hash == h &&
                ((ek = e.key) == key || (ek != null && key.equals(ek))))
                return e.val;
        }
    }
    return null;
}

ConcurrentHashMap的get操作的流程很简单,也很清晰,可以分为三个步骤来描述

  1. 计算hash值,定位到该table索引位置,如果是首节点符合就返回
  2. 如果遇到扩容的时候,会调用标志正在扩容节点ForwardingNode的find方法,查找该节点,匹配就返回
  3. 以上都不符合的话,就往下遍历节点,匹配就返回,否则最后就返回null。

 get没有加锁的话,ConcurrentHashMap是如何保证读到的数据不是脏数据的呢?

 Node的元素val和指针next是用volatile修饰的,在多线程环境下线程A修改因为hash冲突修改结点的val或者新增节点的时候是对线程B可见的。

  • 在1.8中ConcurrentHashMap的get操作全程不需要加锁,这也是它比其他并发集合比如hashtable、用Collections.synchronizedMap()包装的hashmap;安全效率高的原因之一。
  • get操作全程不需要加锁是因为Node的成员val是用volatile修饰的和数组用volatile修饰没有关系。
  • 数组用volatile修饰主要是保证在数组扩容的时候保证可见性。

Size

ConcurrentHashMap的size()方法返回的是一个不精确的值,因为在进行统计的时候有其他线程正在进行插入和删除操作。当然为了这个不精确的值,ConcurrentHashMap也是操碎了心。

为了更好地统计size,ConcurrentHashMap提供了baseCount、counterCells两个辅助变量和一个CounterCell辅助内部类。

 public int size() {
        long n = sumCount();
        return ((n < 0L) ? 0 :
                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
                (int)n);
    }

 

    final long sumCount() {
        CounterCell[] as = counterCells; CounterCell a;
        long sum = baseCount;
        if (as != null) {
            for (int i = 0; i < as.length; ++i) {
                //遍历,所有counter求和
                if ((a = as[i]) != null)
                    sum += a.value;     
            }
        }
        return sum;
    }

 

https://www.cnblogs.com/loren-Yang/p/7466111.html

 https://blog.csdn.net/weixin_38426554/article/details/96482064

https://www.cnblogs.com/fanguangdexiaoyuer/p/10733236.html#_label2_1

https://www.jianshu.com/p/77fda250bddf

https://blog.csdn.net/chenssy/article/details/73521950

 

待啃。。。。

 

posted @ 2019-10-24 17:40  Nausicaa0505  阅读(297)  评论(0编辑  收藏  举报