关于Pytorch中autograd和backward的一些笔记

参考自《Pytorch autograd,backward详解》:

1 Tensor

Pytorch中所有的计算其实都可以回归到Tensor上,所以有必要重新认识一下Tensor。

如果我们需要计算某个Tensor的导数,那么我们需要设置其.requires_grad属性为True。为方便说明,在本文中对于这种我们自己定义的变量,我们称之为叶子节点(leaf nodes),而基于叶子节点得到的中间或最终变量则可称之为结果节点

另外一个Tensor中通常会记录如下图中所示的属性:

  • data: 即存储的数据信息
  • requires_grad: 设置为True则表示该 Tensor 需要求导
  • grad: 该 Tensor 的梯度值,每次在计算 backward 时都需要将前一时刻的梯度归零,否则梯度值会一直累加,这个会在后面讲到。
  • grad_fn: 叶子节点通常为 None,只有结果节点的 grad_fn 才有效,用于指示梯度函数是哪种类型。
  • is_leaf: 用来指示该 Tensor 是否是叶子节点。

举例:

x = torch.rand(3, requires_grad=True)
y = x ** 2
z = x + x

print(
    'x requires grad: {},  is leaf: {},  grad: {},  grad_fn: {}.'
        .format(x.requires_grad, x.is_leaf, x.grad, x.grad_fn)
)
print(
    'y requires grad: {},  is leaf: {},  grad: {},  grad_fn: {}.'
        .format(y.requires_grad, y.is_leaf, y.grad, y.grad_fn)
)
print(
    'z requires grad: {},  is leaf: {},  grad: {},  grad_fn: {}.'
        .format(z.requires_grad, z.is_leaf, z.grad, z.grad_fn)
)

运行结果:

x requires grad: True,  is leaf: True,  grad: None,  grad_fn: None.
y requires grad: True,  is leaf: False,  grad: None,  grad_fn: <PowBackward0 object at 0x0000021A3002CD88>.
z requires grad: True,  is leaf: False,  grad: None,  grad_fn: <AddBackward0 object at 0x0000021A3002CD88>.

 

2 torch.autograd.backward

如下代码:

x = torch.tensor(1.0, requires_grad=True)
y = torch.tensor(2.0, requires_grad=True)
z = x**2+y
z.backward()
print(z, x.grad, y.grad)

>>> tensor(3., grad_fn=<AddBackward0>) tensor(2.) tensor(1.)

当 z 是一个标量,当调用它的 backward 方法后会根据链式法则自动计算出叶子节点的梯度值。

但是如果遇到 z 是一个向量或者是一个矩阵的情况,这个时候又该怎么计算梯度呢?这种情况我们需要定义grad_tensor来计算矩阵的梯度。在介绍为什么使用之前我们先看一下源代码中backward的接口是如何定义的:

torch.autograd.backward(
        tensors, 
        grad_tensors=None, 
        retain_graph=None, 
        create_graph=False, 
        grad_variables=None)
  • tensor: 用于计算梯度的 tensor。也就是说这两种方式是等价的:torch.autograd.backward(z) == z.backward()
  • grad_tensors: 在计算非标量的梯度时会用到。他其实也是一个tensor,它的shape一般需要和前面的tensor保持一致。
  • retain_graph: 通常在调用一次 backward 后,pytorch 会自动把计算图销毁,所以要想对某个变量重复调用 backward,则需要将该参数设置为True
  • create_graph: 当设置为True的时候可以用来计算更高阶的梯度
  • grad_variables: 这个官方说法是 grad_variables' is deprecated. Use 'grad_tensors' instead. 也就是说这个参数后面版本中应该会丢弃,直接使用grad_tensors就好了。

pytorch设计了grad_tensors这么一个参数。它的作用相当于“权重”。

先看一个例子:

x = torch.ones(2,requires_grad=True)
z = x + 2
z.backward()

>>> ...
RuntimeError: grad can be implicitly created only for scalar outputs

上面的报错信息意思是只有对标量输出它才会计算梯度,而求一个矩阵对另一矩阵的导数束手无策。

$X = \begin{bmatrix} x_0 & x_1 \end{bmatrix} \Rightarrow Z = \begin{bmatrix} x_0 + 2 & x_1 + 2 \end{bmatrix} \Rightarrow \frac{\partial Z}{\partial X} = ?$

那么我们只要想办法把 $Z$ 转变成一个标量不就好了?比如我们可以对 $Z$ 求和,然后用求和得到的标量在分别对 $x_0, x_1$ 求导,这样不会对结果有影响,例如:

$Z_{sum} = \sum z_i = x_0 + x_1 + 4$

$\frac{\partial Z_{sum}}{\partial x_0} = \frac{\partial Z_{sum}}{\partial x_1} = 1$

x = torch.ones(2,requires_grad=True)
z = x + 2
z.sum().backward()
print(x.grad)

>>> tensor([1., 1.])

grad_tensors这个参数就扮演了帮助求和的作用。

换句话说,就是对 $Z$ 和一个权重张量grad_tensors进行 hadamard product 后求和。这也是 grad_tensors 需要与传入的 tensor 大小一致的原因。

x = torch.ones(2,requires_grad=True)
z = x + 2
z.backward(torch.ones_like(z)) # grad_tensors需要与输入tensor大小一致
print(x.grad)

>>> tensor([1., 1.])

 

3 torch.autograd.grad

torch.autograd.grad(
        outputs, 
        inputs, 
        grad_outputs=None, 
        retain_graph=None, 
        create_graph=False, 
        only_inputs=True, 
        allow_unused=False)

看了前面的内容后再看这个函数就很好理解了,各参数作用如下:

  • outputs: 结果节点,即被求导数
  • inputs: 叶子节点
  • grad_outputs: 类似于backward方法中的grad_tensors
  • retain_graph: 同上
  • create_graph: 同上
  • only_inputs: 默认为True,如果为True,则只会返回指定input的梯度值。 若为False,则会计算所有叶子节点的梯度,并且将计算得到的梯度累加到各自的.grad属性上去。
  • allow_unused: 默认为False, 即必须要指定input,如果没有指定的话则报错。

注意该函数返回的是 tuple 类型。

posted @ 2020-02-24 20:29  Dilthey  阅读(1599)  评论(0编辑  收藏  举报