1 import torch
2 import torch.utils.data as Data
3 import torch.nn.functional as F
4 import matplotlib.pyplot as plt
5 import torch.optim
6 # torch.manual_seed(1) # reproducible
7
8 LR = 0.01
9 BATCH_SIZE = 32
10 EPOCH = 12
11
12 # fake dataset
13 x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
14 y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))
15
16 # plot dataset
17 plt.scatter(x.numpy(), y.numpy())
18 plt.show()
19
20 # put dateset into torch dataset
21 torch_dataset = Data.TensorDataset(x, y)
22 loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2,)
23
24
25 # default network
26 class Net(torch.nn.Module):
27 def __init__(self):
28 super(Net, self).__init__()
29 self.hidden = torch.nn.Linear(1, 20) # hidden layer
30 self.predict = torch.nn.Linear(20, 1) # output layer
31
32 def forward(self, x):
33 x = F.relu(self.hidden(x)) # activation function for hidden layer
34 x = self.predict(x) # linear output
35 return x
36
37 if __name__ == '__main__':
38 # different nets
39 net_SGD = Net()
40 net_Momentum = Net()
41 net_RMSprop = Net()
42 net_Adam = Net()
43 nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]
44
45 # different optimizers
46 opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR)
47 opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
48 opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
49 opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
50 optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]
51
52 loss_func = torch.nn.MSELoss()
53 losses_his = [[], [], [], []] # record loss
54
55 # training
56 for epoch in range(EPOCH):
57 print('Epoch: ', epoch)
58 for step, (b_x, b_y) in enumerate(loader): # for each training step
59 for net, opt, l_his in zip(nets, optimizers, losses_his):
60 output = net(b_x) # get output for every net
61 loss = loss_func(output, b_y) # compute loss for every net
62 opt.zero_grad() # clear gradients for next train
63 loss.backward() # backpropagation, compute gradients
64 opt.step() # apply gradients
65 l_his.append(loss.data.numpy()) # loss recoder
66
67 labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
68 for i, l_his in enumerate(losses_his):
69 plt.plot(l_his, label=labels[i])
70 plt.legend(loc='best')
71 plt.xlabel('Steps')
72 plt.ylabel('Loss')
73 plt.ylim((0, 0.2))
74 plt.show()