Python Threading 串行VS并发
Threading 串行VS并发
IO 密集型
结果
>>> 串行开始...
下载https://www.baidu.com/成功,状态码为200
下载https://www.sina.com.cn/成功,状态码为200
下载https://www.bilibili.com/成功,状态码为412
耗时:0.42061281204223633
>>> 串行结束...
>>> 并发开始...
下载https://www.baidu.com/成功,状态码为200
下载https://www.sina.com.cn/成功,状态码为200
下载https://www.bilibili.com/成功,状态码为412
耗时:0.1446540355682373
>>> 并发结束...
示例代码
# -*- coding: utf-8 -*-
# I/O密集时多线程例子:一边打印一边下载网页内容 串行VS并发
import requests
import threading
import time
# 用几个响应速度较快的真实网页
urls = [
"https://www.baidu.com/",
"https://www.sina.com.cn/",
"https://www.bilibili.com/"
]
def download(url):
try:
r = requests.get(url, timeout=3)
print(f"下载{url}成功,状态码为{r.status_code}")
except requests.RequestException as e:
print(e)
# ===== 串行
def run_serial():
print(">>> 串行开始...")
start_time = time.time()
for url in urls:
download(url)
end_time = time.time()
print(f"耗时:{end_time - start_time}")
print(">>> 串行结束...")
# ==== 并发(多线程)
def run_threading():
print(">>> 并发开始...")
start_time = time.time()
threads = []
for url in urls:
t = threading.Thread(target=download, args=(url,)) # target=函数名,args=函数参数(元组)
threads.append(t)
t.start() # 线程开始执行
for t in threads:
t.join() # join 主线程等待子线程执行完
end_time = time.time()
print(f"耗时:{end_time - start_time}")
print(">>> 并发结束...")
if __name__ == '__main__':
run_serial()
run_threading()
计算密集型
结果
CPU密集任务运行时,并行并不会比串行快多少,达不到加速的效果
>>> 开始串行...
>>> 串行耗时: 73.33004999160767 秒
>>> 开始并发...
>>> 并发耗时: 73.11574292182922 秒
示例代码
# -*- coding: utf-8 -*-
import math
import requests
import threading
import time
# “烧 CPU”的函数:对一大批数字做平方根运算(math.sqrt())
N = 500000000
def cpu_task():
total = 0
for i in range(N):
total += math.sqrt(i)
return total
# ==== 串行
def run_serial():
print(">>> 开始串行...")
start_time = time.time()
cpu_task()
cpu_task()
cpu_task()
print(">>> 串行耗时:", time.time() - start_time, "秒")
# ==== 并发
def run_threaded():
print(">>> 开始并发...")
start_time = time.time()
threas = []
for _ in range(3):
t = threading.Thread(target=cpu_task)
t.start()
threas.append(t)
for t in threas:
t.join()
print(">>> 并发耗时:", time.time() - start_time, "秒")
if __name__ == '__main__':
run_serial()
run_threaded()
总结:多线程的优势与局限
| I/O 密集 | 请求网页、读写文件、等待数据库 | ✅ 非常适合 |
|---|---|---|
| CPU 密集 | 图像处理、大量计算、加密解密 | ❌ 会被 GIL 限制,不如用多进程 |
| 少量任务 | 任务不多,时间也短 | ⚠️ 线程切换反而是开销 |
| 并发数量极大 | 上千并发、强隔离 | ⚠️ 推荐协程/进程池,线程管理成本高 |

浙公网安备 33010602011771号