上一页 1 ··· 94 95 96 97 98 99 100 101 102 ··· 139 下一页
摘要: 在machine learning中,特征降维和特征选择是两个常见的概念,在应用machine learning来解决问题的论文中经常会出现。特征降维和特征选择的目的都是使数据的维数降低,使数据维度降小。但实际上两者的区别是很大,他们的本质是完全不同的。 https://avoid.overfit. 阅读全文
posted @ 2022-12-29 10:15 deephub 阅读(44) 评论(0) 推荐(0)
摘要: 在进行机器学习项目时,特别是在处理深度学习和神经网络时,最好使用GPU而不是CPU来处理,因为在神经网络方面,即使是一个非常基本的GPU也会胜过CPU。 但是你应该买哪种GPU呢?本文将总结需要考虑的相关因素,以便可以根据预算和特定的建模要求做出明智的选择。 为什么 GPU 比 CPU 更适合机器学 阅读全文
posted @ 2022-12-28 11:11 deephub 阅读(193) 评论(0) 推荐(0)
摘要: 深度神经网络需要很长时间来训练。训练速度受模型的复杂性、批大小、GPU、训练数据集的大小等因素的影响。 在PyTorch中,torch.utils.data.Dataset和torch.utils.data.DataLoader通常用于加载数据集和生成批处理。但是从版本1.11开始,PyTorch引 阅读全文
posted @ 2022-12-27 10:24 deephub 阅读(60) 评论(0) 推荐(0)
摘要: 时间序列中非恒定方差的检测与处理,如果一个时间序列的方差随时间变化,那么它就是异方差的。否则数据集是同方差的。 异方差性影响时间序列建模。因此检测和处理这种情况非常重要。 让我们从一个可视化的例子开始。 下面的图1显示了航空公司乘客的时间序列。可以看到在整个序列中变化是不同的。在该系列的后一部分方差 阅读全文
posted @ 2022-12-26 10:16 deephub 阅读(356) 评论(0) 推荐(0)
摘要: CCNet, Transformer递归交叉自注意力,比非局部神经网络更有效。华中科技大学、地平线、ReLER 和伊利诺伊大学香槟分校联合研发 论文提出了交叉网络 (CCNet),对于每个像素,CCNet 中的一个新的交叉注意力模块收集其交叉路径上所有像素的上下文信息。通过进一步的递归操作,每个像素 阅读全文
posted @ 2022-12-25 11:27 deephub 阅读(80) 评论(0) 推荐(0)
摘要: Jupyter Notebooks使用非常简单并且对于任何面向python的任务都可以非常方便的使用。只要它的内核处于活动状态,就可以用数据子集运行和测试脚本,而不用每次重启程序,这样可以加快我们开发和测试的速度。 但是因为它太简单了,所以我们经常会犯一些错误,浪费我们的时间和计算成本。在这篇文章中 阅读全文
posted @ 2022-12-24 10:42 deephub 阅读(10) 评论(0) 推荐(0)
摘要: 变分自编码器(VAE)是一种应用广泛的无监督学习方法,它的应用包括图像生成、表示学习和降维等。虽然在网络架构上经常与Auto-Encoder联系在一起,但VAE的理论基础和数学公式是截然不同的。本文将讨论是什么让VAE如此不同,并解释VAE如何连接“变分”方法和“自编码器”。 本文更专注于VAE的统 阅读全文
posted @ 2022-12-23 11:21 deephub 阅读(221) 评论(0) 推荐(0)
摘要: 我们是否可以通过气象图来预测降水量呢?今天我们来使用CNN和LSTM进行一个有趣的实验。 我们这里使用荷兰皇家气象研究所(也称为KNMI)提供的开放数据集和公共api,来获取数据集并且构建模型预测当地的降水量。 数据收集 KNMI提供的数据集,我们假设气象雷达产生的信号在反射时会被降水(雨、雪、冰雹 阅读全文
posted @ 2022-12-22 10:33 deephub 阅读(442) 评论(0) 推荐(0)
摘要: 作为数据科学家,使用正确的工具和技术来最大限度地利用数据是很重要的。Pandas是数据操作、分析和可视化的重要工具,有效地使用Pandas可能具有挑战性,从使用向量化操作到利用内置函数,这些最佳实践可以帮助数据科学家使用Pandas快速准确地分析和可视化数据。 在本文中,我们将重点介绍在DataFr 阅读全文
posted @ 2022-12-21 10:34 deephub 阅读(19) 评论(0) 推荐(0)
摘要: 通常在机器学习面试中,问完常见基础知识的技术问题之后会有具体的项目问题的讨论,所以这里准备了一些项目相关的话题,以可以帮助你准备和通过计算机视觉相关的面试。 计算机视觉的主要任务 分类:模型学习图片包含了什么物体 目标检测:模型查找对象位置,并且它周围画一个包围框 目标跟踪:模型定位对象并查看对象下 阅读全文
posted @ 2022-12-20 10:51 deephub 阅读(79) 评论(0) 推荐(0)
上一页 1 ··· 94 95 96 97 98 99 100 101 102 ··· 139 下一页