会员
众包
新闻
博问
闪存
赞助商
HarmonyOS
Chat2DB
所有博客
当前博客
我的博客
我的园子
账号设置
会员中心
简洁模式
...
退出登录
注册
登录
deephub
overfit深度学习
博客园
首页
新随笔
联系
订阅
管理
2025年10月25日
LLM安全新威胁:为什么几百个毒样本就能破坏整个模型
摘要: 数据投毒,也叫模型投毒或训练数据后门攻击,本质上是在LLM的训练、微调或检索阶段偷偷塞入精心构造的恶意数据。一旦模型遇到特定的触发词,就会表现出各种异常行为——输出乱码、泄露训练数据、甚至直接绕过安全限制。 这跟提示注入完全是两码事。提示注入发生在推理阶段,属于临时性攻击;而投毒直接改写了模型的权重
阅读全文
posted @ 2025-10-25 19:08 deephub
阅读(6)
评论(0)
推荐(0)
公告