摘要: 在敏感数据训练的机器学习模型中,个人信息通过推理攻击泄露的风险日益凸显。本文探讨如何在模型训练过程中平衡实用性与形式化隐私保证这一关键问题。我们采用带有噪声梯度更新的模拟DP-SGD算法实现差分隐私机器学习。实验结果表明,该模型在保持71%准确率和0.79 AUC的同时,展现出良好的泛化能力,但在少 阅读全文
posted @ 2025-07-18 20:27 deephub 阅读(19) 评论(0) 推荐(0)