Proximal SFT:用PPO强化学习机制优化SFT,让大模型训练更稳定

监督微调(SFT)基本上是现在训练大模型时必走的路。不管你要让模型干什么,先用 SFT 让它学会基本的指令跟随和对话能力,然后再通过 PPO 或者 GRPO 这些强化学习方法进一步调优。

但 SFT 有个老毛病:容易过拟合。模型会死记硬背训练数据,泛化能力变差。更要命的是,经过 SFT 训练的模型在后续的强化学习阶段往往探索能力不足,这就是所谓的"熵坍塌"现象 - 模型变得过于确定,生成的内容单调乏味。

这篇论文提出了 Proximal Supervised Fine-Tuning (PSFT),本质上是把 PPO 的思路引入到 SFT 中。这个想法挺巧妙的:既然 PPO 能够稳定策略更新,那为什么不用类似的机制来稳定监督学习的参数更新呢?

 

https://avoid.overfit.cn/post/e933ddbf941a4530b7bf09782c70bbea

posted @ 2025-09-08 21:20  deephub  阅读(8)  评论(0)    收藏  举报