Memento:基于记忆无需微调即可让大语言模型智能体持续学习的框架

大语言模型智能体(LLM Agent)是一类利用大语言模型通过交互、推理和决策来自主执行复杂任务的系统,通常具备访问外部工具、记忆系统或环境的能力。与被动响应单一提示的传统LLM不同,LLM智能体采用主动且迭代的运行模式,在明确目标的引导下执行任务。这类系统正被广泛部署为跨领域的自主问题解决器,OpenAI的Deep Research智能体便是典型代表。

当前LLM智能体的构建主要遵循两种学习范式,但是都存在根本性限制。第一种范式基于专门化框架构建智能体,采用固定工作流程和硬编码推理逻辑。虽然这种方法在特定任务上表现良好,但缺乏必要的灵活性,部署后智能体保持静态状态,无法整合在线信息或适应新出现的情况。

第二种范式专注于通过参数调优更新底层LLM本身,包括监督微调和强化学习等方法。这种方式虽然能够实现更灵活的行为模式,但需要承担高昂的计算成本。这两种构建自适应智能体的方法要么过于僵化,依赖静态的手工制作反思工作流程,要么计算密集,需要对LLM模型参数进行梯度更新。

 

https://avoid.overfit.cn/post/b6655a71ece747729890be10959e8855

posted @ 2025-09-02 19:55  deephub  阅读(19)  评论(0)    收藏  举报