提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
神经网络训练过程中,模型优化与过拟合防控之间的平衡是一个核心挑战。过拟合的模型虽然在训练数据上表现优异,但由于其复杂性导致模型将训练数据集的特定特征作为映射函数的组成部分,在实际部署环境中往往表现不佳,甚至出现性能急剧下降的问题。
正则化技术是解决此类问题的有效方法。本文将深入探讨L1、L2和ElasticNet正则化技术,重点关注其在PyTorch框架中的具体实现。关于这些技术的理论基础,建议读者参考相关理论文献以获得更深入的理解。通过本文的学习,您将掌握神经网络正则化的必要性、L1、L2和ElasticNet正则化的理论工作机制,以及在PyTorch中实现这些正则化技术的具体方法。
https://avoid.overfit.cn/post/9848d169f0a74458b8dbec5591e8885e