基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法

本文探讨在量化交易领域中结合时序特征和静态特征的混合建模方法。通过整合堆叠稀疏降噪自编码器(SSDA)和基于LSTM的自编码器(LSTM-AE),我们要构建一个能够全面捕捉市场动态特性的交易系统。

特征表示学习

在特征工程阶段,SSDA通过降噪技术提取股票数据的鲁棒表示。该方法能够有效过滤市场噪声,保留对价格走势具有实质影响的关键特征,如趋势变化点和异常波动。

 

https://avoid.overfit.cn/post/232a0143ad5a415eb66d8fbac800d49b

posted @ 2024-12-19 09:56  deephub  阅读(78)  评论(0)    收藏  举报