MemLong: 基于记忆增强检索的长文本LLM生成方法

本文将介绍MemLong,这是一种创新的长文本语言模型生成方法。MemLong通过整合外部检索器来增强模型处理长上下文的能力,从而显著提升了大型语言模型(LLM)在长文本处理任务中的表现。

核心概念

MemLong的设计理念主要包括以下几点:

  1. 高效扩展LLM上下文窗口的轻量级方法。
  2. 利用不可训练的外部记忆库存储历史上下文和知识。
  3. 通过检索相关的块级键值(K-V)对来增强模型输入。
  4. 适用于各种仅解码器的预训练语言模型。
  5. 引入额外的记忆检索(ret-mem)组件和检索因果注意力模块。

MemLong的工作流程如图1所示:

图1:MemLong的记忆和检索过程示意图

 

https://avoid.overfit.cn/post/886d820cba6240bfb005e4c2378fe2e8

posted @ 2024-09-14 09:27  deephub  阅读(212)  评论(0)    收藏  举报