时间序列特征提取:从理论到Python代码实践

时间序列是一种特殊的存在。这意味着你对表格数据或图像进行的许多转换/操作/处理技术对于时间序列来说可能根本不起作用。

"特征提取"的想法是对我们拥有的数据进行"加工",确保我们提取所有有意义的特征,以便下一步(通常是机器学习应用)可以从中受益。也就是说它是一种通过提供重要特征并过滤掉所有不太重要的特征来"帮助"机器学习步骤的方法。

这是完整的特征提取过程:

 

https://avoid.overfit.cn/post/5790f6f01f7940cdabf3afa4d351b7bb

posted @ 2024-08-26 20:51  deephub  阅读(70)  评论(0)    收藏  举报