图神经网络入门示例:使用PyTorch Geometric 进行节点分类

基于图的神经网络是强大的模型,可以学习网络中的复杂模式。在本文中,我们将介绍如何为同构图数据构造PyTorch Data对象,然后训练不同类型的神经网络来预测节点所属的类。这种类型的预测问题通常被称为节点分类。

我们将使用来自Benedek Rozemberczki, Carl Allen和Rik Sarkar于2019年发布的“Multi-scale Attributed Node Embedding”论文中的Facebook Large Page-Page Network¹数据集。

该数据集包含22,470个Facebook页面,按主题分为四类。由不同大小的特征向量表示。数据集还包含Facebook pages 上跟随其他page的信息。网络中有171,992个链接或边。

 

https://avoid.overfit.cn/post/885ad3f5eb424045b02408699c45e340

posted @ 2024-05-17 10:38  deephub  阅读(56)  评论(0)    收藏  举报