莫比乌斯反演精题演算草稿(Crash的数字表格+GCD+Visible Lattice Points+Primes in GCD Table+数表+约数个数和)

链接

六道莫比乌斯反演练习题:

Crash的数字表格
GCD
Visible Lattice Points
Primes in GCD Table
数表
约数个数和

以下仅为草稿,供以启发思路,或快速回顾

Crash的数字表格

f ( x ) = ∑ k = 1 m i n ( n , m ) k ∑ i = 1 n / k ∑ j = 1 m / k i ∗ j ( g c d ( i , j ) = = x ) f(x)=\sum_{k=1}^{min(n,m)}k\sum_{i=1}^{n/k}\sum_{j=1}^{m/k}i*j(gcd(i,j)==x) f(x)=k=1min(n,m)ki=1n/kj=1m/kij(gcd(i,j)==x)

S ( x ) = ( 1 + x ) ∗ x / 2 S(x)=(1+x)*x/2 S(x)=(1+x)x/2

F ( x ) = x 2 ∑ k = 1 m i n ( n , m ) k ∗ S ( n / ( k x ) ) ∗ S ( m / ( k x ) ) = ∑ x ∣ d f ( d ) F(x)=x^2\sum_{k=1}^{min(n,m)}k*S(n/(kx))*S(m/(kx))=\sum_{x|d}f(d) F(x)=x2k=1min(n,m)kS(n/(kx))S(m/(kx))=xdf(d)

f ( x ) = ∑ x ∣ d n F ( d ) ∗ μ ( d x ) f(x)=\sum_{x|d}^{n}F(d)*\mu(\frac{d}{x}) f(x)=xdnF(d)μ(xd)

= ∑ x ∣ d n μ ( d x ) d 2 ∑ k = 1 m i n ( n , m ) k ∗ S ( n k d ) ∗ S ( m k d ) =\sum_{x|d}^{n}\mu(\frac{d}{x})d^2\sum_{k=1}^{min(n,m)}k*S(\frac{n}{kd})*S(\frac{m}{kd}) =xdnμ(xd)d2k=1min(n,m)kS(kdn)S(kdm)

a n s = f ( 1 ) = ∑ d = 1 n μ ( d ) d 2 ∑ k = 1 m i n ( n , m ) k ∗ S ( n k d ) ∗ S ( m k d ) ans=f(1)=\sum_{d=1}^{n}\mu(d)d^2\sum_{k=1}^{min(n,m)}k*S(\frac{n}{kd})*S(\frac{m}{kd}) ans=f(1)=d=1nμ(d)d2k=1min(n,m)kS(kdn)S(kdm)

= ∑ T = 1 n , m S ( n T ) ∗ S ( m T ) ⋅ ( ∑ d ∣ T T d ⋅ μ ( d ) d 2 ) =\sum_{T=1}^{n,m}S(\frac{n}{T})*S(\frac{m}{T})\cdot(\sum_{d|T}\frac{T}{d}\cdot\mu(d)d^2) =T=1n,mS(Tn)S(Tm)(dTdTμ(d)d2)

= ∑ T = 1 n , m S ( n T ) ∗ S ( m T ) ⋅ G ( T ) =\sum_{T=1}^{n,m}S(\frac{n}{T})*S(\frac{m}{T})\cdot G(T) =T=1n,mS(Tn)S(Tm)G(T)

G ( T ) G(T) G(T):积性函数, a n s ans ans:前缀和+数论分块解决

GCD

f ( k ) = ∑ i = 1 n ∑ j = 1 m ( g c d ( i , j ) = = k ) f(k)=\sum_{i=1}^{n}\sum_{j=1}^{m}(gcd(i,j)==k) f(k)=i=1nj=1m(gcd(i,j)==k)

F ( k ) = ∑ i = 1 n ∑ j = 1 m ( k ∣ g c d ( i , j ) ) = [ n k ] [ m k ] = ∑ k ∣ d f ( d ) F(k)=\sum_{i=1}^{n}\sum_{j=1}^{m}(k|gcd(i,j))=[\frac{n}{k}][\frac{m}{k}]=\sum_{k|d}f(d) F(k)=i=1nj=1m(kgcd(i,j))=[kn][km]=kdf(d)

f ( k ) = ∑ k ∣ d F ( d ) ⋅ μ ( d k ) = ∑ i = 1 n / k    [ n i k ] ⋅ [ m i k ] ⋅ μ ( i ) f(k)=\sum_{k|d}F(d)\cdot\mu(\frac{d}{k})=\sum_{i=1}^{n/k}\;[\frac{n}{ik}]\cdot[\frac{m}{ik}]\cdot\mu(i) f(k)=kdF(d)μ(kd)=i=1n/k[ikn][ikm]μ(i)

a n s ans ans:前缀和+数论分块解决

Visible Lattice Points

f ( k ) = ∑ i = 1 n ∑ j = 1 n ∑ k = 1 n g c d ( i , j , k ) = = k f(k) = \sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{k=1}^{n}gcd(i,j,k)==k f(k)=i=1nj=1nk=1ngcd(i,j,k)==k

F ( k ) = ∑ i = 1 n ∑ j = 1 n ∑ k = 1 n k ∣ g c d ( i , j , k ) = [ n k ] 3 = ∑ k ∣ d f ( d ) F(k)=\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{k=1}^{n}k|gcd(i,j,k)=[\frac{n}{k}]^3=\sum_{k|d}f(d) F(k)=i=1nj=1nk=1nkgcd(i,j,k)=[kn]3=kdf(d)

f ( k ) = ∑ k ∣ d F ( d ) μ ( d k ) = ∑ k ∣ d ⋅ [ n d ] 3 ⋅ μ ( d k ) = ∑ i = 1 n ⋅ [ n i k ] 3 ⋅ μ ( i ) f(k)=\sum_{k|d}F(d)\mu(\frac{d}{k})=\sum_{k|d}\cdot[\frac{n}{d}]^3\cdot\mu(\frac{d}{k})=\sum_{i=1}^{n}\cdot[\frac{n}{ik}]^3\cdot\mu(i) f(k)=kdF(d)μ(kd)=kd[dn]3μ(kd)=i=1n[ikn]3μ(i)

a n s = f ( 1 ) = ∑ i = 1 n ⋅ [ n i ] 3 ⋅ μ ( i ) ( 坐 标 都 > 0 的 三 维 体 ) + 3 ∑ j = 1 n ⋅ [ n j ] 2 ⋅ μ ( j ) ( 某 个 坐 标 为 0 的 三 个 面 ) + 3 ( 只 有 一 个 坐 标 不 为 0 , 与 ( 0 , 0 , 0 ) 相 邻 的 三 个 点 ) ans=f(1)=\sum_{i=1}^{n}\cdot[\frac{n}{i}]^3\cdot\mu(i)(坐标都>0的三维体)\\+3\sum_{j=1}^{n}\cdot [\frac{n}{j}]^2\cdot\mu(j)(某个坐标为0的三个面)+3(只有一个坐标不为0,与(0,0,0)相邻的三个点) ans=f(1)=i=1n[in]3μ(i)>0+3j=1n[jn]2μ(j)0+30(0,0,0)

a n s ans ans:前缀和+数论分块解决

Primes in GCD Table

f ( k ) = ∑ p ∑ i = 1 n / p ∑ j = 1 m / p g c d ( i , j ) = = k f(k)=\sum_{p}\sum_{i=1}^{n/p}\sum_{j=1}^{m/p}gcd(i,j)==k f(k)=pi=1n/pj=1m/pgcd(i,j)==k

F ( k ) = ∑ p ∑ i = 1 n / p ∑ j = 1 m / p k ∣ g c d ( i , j ) = ∑ k ∣ d f ( d ) = ∑ p n p k m p k F(k)=\sum_{p}\sum_{i=1}^{n/p}\sum_{j=1}^{m/p}k|gcd(i,j)=\sum_{k|d}f(d)=\sum_{p}\frac{n}{pk}\frac{m}{pk} F(k)=pi=1n/pj=1m/pkgcd(i,j)=kdf(d)=ppknpkm

f ( k ) = ∑ k ∣ d F ( d ) μ ( d k ) = ∑ p ∑ k ∣ d n p d m p d μ ( d k ) , f(k)=\sum_{k|d}F(d)\mu(\frac{d}{k})=\sum_{p}\sum_{k|d}\frac{n}{pd}\frac{m}{pd}\mu(\frac{d}{k}), f(k)=kdF(d)μ(kd)=pkdpdnpdmμ(kd),

a n s = f ( 1 ) = ∑ p ∑ i = 1 n n p i m p i μ ( i ) ans=f(1)=\sum_{p}\sum_{i=1}^{n}\frac{n}{pi}\frac{m}{pi}\mu(i) ans=f(1)=pi=1npinpimμ(i)

a n s ans ans:前缀和+数论分块解决

CAUTION : 最后分块时还要乘上区间中的质数个数

数表

h ( x ) h(x) h(x):能同时整除 x x x 的所有自然数之和

f ( x ) = ∑ k = 1 n h ( k ) ∑ i = 1 n / k ∑ j = 1 m / k ( g c d ( i , j ) = = x ) f(x)=\sum_{k=1}^{n}h(k)\sum_{i=1}^{n/k}\sum_{j=1}^{m/k}(gcd(i,j)==x) f(x)=k=1nh(k)i=1n/kj=1m/k(gcd(i,j)==x)

F ( x ) = ∑ k = 1 n h ( k ) ∑ i = 1 n / k ∑ j = 1 m / k ( x ∣ g c d ( i , j ) ) = ∑ k = 1 n h ( k ) ⋅ [ n k x ] ⋅ [ m k x ] = ∑ x ∣ d f ( d ) F(x)=\sum_{k=1}^{n}h(k)\sum_{i=1}^{n/k}\sum_{j=1}^{m/k}(x|gcd(i,j))=\sum_{k=1}^{n}h(k)\cdot[\frac{n}{kx}]\cdot[\frac{m}{kx}]=\sum_{x|d}f(d) F(x)=k=1nh(k)i=1n/kj=1m/k(xgcd(i,j))=k=1nh(k)[kxn][kxm]=xdf(d)

f ( k ) = ∑ k ∣ d F ( d ) μ ( d k ) = ∑ k ∣ d ∑ k = 1 n h ( k ) n k d m k d μ ( d k ) f(k)=\sum_{k|d}F(d)\mu(\frac{d}{k})=\sum_{k|d}\sum_{k=1}^{n}h(k)\frac{n}{kd}\frac{m}{kd}\mu(\frac{d}{k}) f(k)=kdF(d)μ(kd)=kdk=1nh(k)kdnkdmμ(kd)

a n s = f ( 1 ) = ∑ i = 1 n ∑ k = 1 n h ( k ) n k i m k i μ ( i ) = ∑ T = 1 n n T m T ∑ k ∣ T h ( k ) μ ( T k ) ans=f(1)=\sum_{i=1}^{n}\sum_{k=1}^{n}h(k)\frac{n}{ki}\frac{m}{ki}\mu(i)=\sum_{T=1}^{n}\frac{n}{T}\frac{m}{T}\sum_{k|T}h(k)\mu(\frac{T}{k}) ans=f(1)=i=1nk=1nh(k)kinkimμ(i)=T=1nTnTmkTh(k)μ(kT)

a n s ans ans:前缀和+数论分块解决

CAUTION : 最后离线用树状数组加贡献求前缀和,总 O ( n l o g 2 n ) O(nlog^2n) O(nlog2n)

约数个数和

结论牢记心间,永久不散

d ( i j ) = ∑ x ∣ i ∑ y ∣ j ( g c d ( x , y ) = = 1 ) d(ij)=\sum_{x|i}\sum_{y|j}(gcd(x,y)==1) d(ij)=xiyj(gcd(x,y)==1)

f ( k ) = ∑ i = 1 n ∑ j = 1 m ∑ x ∣ i ∑ y ∣ j ( g c d ( x , y ) = = k ) = ∑ x = 1 n ∑ y = 1 m ( g c d ( x , y ) = = k ) [ n x ] [ m y ] f(k)=\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|i}\sum_{y|j}(gcd(x,y)==k)=\sum_{x=1}^{n}\sum_{y=1}^{m}(gcd(x,y)==k)[\frac{n}{x}][\frac{m}{y}] f(k)=i=1nj=1mxiyj(gcd(x,y)==k)=x=1ny=1m(gcd(x,y)==k)[xn][ym]

F ( k ) = ∑ x = 1 n ∑ y = 1 m ( k ∣ g c d ( x , y ) ) [ n x ] [ m y ] F(k)=\sum_{x=1}^{n}\sum_{y=1}^{m}(k|gcd(x,y))[\frac{n}{x}][\frac{m}{y}] F(k)=x=1ny=1m(kgcd(x,y))[xn][ym]

= ∑ x = 1 n / k [ n x k ] ∑ y = 1 m / k [ m y k ] =\sum_{x=1}^{n/k}[\frac{n}{xk}]\sum_{y=1}^{m/k}[\frac{m}{yk}] =x=1n/k[xkn]y=1m/k[ykm]

f ( k ) = ∑ k ∣ d F ( d ) μ ( d k ) = ∑ k ∣ d μ ( d k ) ∑ x = 1 n / d [ n x d ] ∑ y = 1 m / d [ m y d ] f(k)=\sum_{k|d}F(d)\mu(\frac{d}{k})=\sum_{k|d}\mu(\frac{d}{k})\sum_{x=1}^{n/d}[\frac{n}{xd}]\sum_{y=1}^{m/d}[\frac{m}{yd}] f(k)=kdF(d)μ(kd)=kdμ(kd)x=1n/d[xdn]y=1m/d[ydm]

a n s = f ( 1 ) = ∑ d = 1 n μ ( d ) ∑ x = 1 n / d [ n x d ] ∑ y = 1 m / d [ m y d ] ans=f(1)=\sum_{d=1}^{n}\mu(d)\sum_{x=1}^{n/d}[\frac{n}{xd}]\sum_{y=1}^{m/d}[\frac{m}{yd}] ans=f(1)=d=1nμ(d)x=1n/d[xdn]y=1m/d[ydm]

h ( x ) = ∑ i = 1 x [ x i ] h(x)=\sum_{i=1}^{x}[\frac{x}{i}] h(x)=i=1x[ix]

a n s = ∑ d = 1 n h ( n d ) h ( m d ) μ ( d ) ans=\sum_{d=1}^{n}h(\frac{n}{d})h(\frac{m}{d})\mu(d) ans=d=1nh(dn)h(dm)μ(d)

a n s ans ans:前缀和+数论分块解决

posted @ 2021-01-09 17:59  DD_XYX  阅读(30)  评论(0)    收藏  举报