CF1450G. Communism(状压DP)
题面
有一个字符串 s \tt s s 和一个有理数 k \tt k k,可以进行如下操作任意次:
- 选一个当前串中存在的字符 x \tt x x ,令 i 1 , i 2 , . . . , i m \tt i_1,i_2,...,i_m i1,i2,...,im 为字符 x \tt x x 存在的 m \tt m m 个位置。如果满足 k ⋅ ( i m − i 1 + 1 ) ≤ m \tt k\cdot(i_m-i_1+1)\leq m k⋅(im−i1+1)≤m ,那么可以再选一种不同的当前串中存在的字符 y \tt y y ,把所有字符 x \tt x x 变成字符 y \tt y y 。
不论进行多少次操作,最终要求整个字符串只存在一种字符 z \tt z z 。求所有可能的 z \tt z z 。
Input
第一行三个整数 n , a , b \tt n,a,b n,a,b ,其中 a b = k \tt \frac{a}{b}=k ba=k 。
第二行一个长为 n \tt n n 的由小写字母组成的字符串 s \tt s s ,串中不包含 ‘t’,‘r’,‘y’,‘g’,‘u’,‘b’ 六种字符 。
范围
1 ≤ n ≤ 5 000 , 1 ≤ a ≤ b ≤ 100 000 \tt 1\leq n\leq 5\,000,1\leq a\leq b\leq100\,000 1≤n≤5000,1≤a≤b≤100000
1500 m s , 32 m b \tt 1500\,ms,32\,mb 1500ms,32mb .
题解
经历了前面几道黑题的洗礼,一看到这题的样例及解释,就有种不会做的感觉。
我们细读一遍题,慢慢理一下思路。
首先,在 26 \tt26 26 种字母之中,排除了 6 \tt6 6 种,剩下了 20 \tt20 20 种,刚好是可以做状压的数据范围。
会不会这么巧呢?我们不妨试试。
不难发现,一种字符只能操作一次。
既然最终只有一种字符 z \tt z z,那么上一步,就是把另一种字符的所有位置进行操作,而这些位置原本是除了 z \tt z z 以外的其它字符位置的并集。倒推回去,中间状态就是把一个字符集 S \tt S S 进行操作,此时字符集 S \tt S S 中所有字符的所有原先位置上,都有着相同的字符(该字符是什么不重要)。
不妨设 l e n g t h S \tt length_S lengthS 为字符集 S \tt S S 最右边的位置 - 最左边的位置 + 1, c n t S \tt cnt_S cntS 为 S \tt S S 占据的位置数量。
那么我们定义一个 D P \tt DP DP , d p [ i ] \tt dp[i] dp[i](bool) 表示字符集 i \tt i i 是/否能被操作,那么有如下性质:
- d p [ 0 ] = 1 \tt dp[0]=1 dp[0]=1 。
- 当 i = { x } \tt i=\{x\} i={x} 时,如果字符 x \tt x x 一开始就能被操作,也就是说 k ⋅ l e n g t h x ≤ c n t x \tt k\cdot length_x\leq cnt_x k⋅lengthx≤cntx ,那么 d p [ i ] = 1 \tt dp[i]=1 dp[i]=1,这可以当作一种边界情况处理。
- 对于一种字符 x \tt x x ,一开始的 x \tt x x 是不能被操作的,但是能够让集合 i − x \tt i-x i−x 的字符被操作、变成字符 x \tt x x,然后整体又能被操作了,那么 d p [ i ] = 1 \tt dp[i]=1 dp[i]=1。也就是说,如果存在 x ∈ i \tt x\in i x∈i ,满足 d p [ i − x ] = 1 , k ⋅ l e n g t h i − x ≤ c n t i − x \tt dp[i-x]=1,k\cdot length_{i-x}\leq cnt_{i-x} dp[i−x]=1,k⋅lengthi−x≤cnti−x 且 k ⋅ l e n g t h i ≤ c n t i \tt k\cdot length_{i}\leq cnt_{i} k⋅lengthi≤cnti ,那么 d p [ i ] = 1 \tt dp[i]=1 dp[i]=1 。
- 当 i = S 1 ∪ S 2 \tt i=S_1\cup S_2 i=S1∪S2,且 S 1 ∩ S 2 = ∅ , d p [ S 1 ] = 1 , d p [ S 2 ] = 1 \tt S_1\cap S_2=\empty,dp[S_1]=1,dp[S_2]=1 S1∩S2=∅,dp[S1]=1,dp[S2]=1 时,即两个不相交的字符集分别能被操作。相当于它们的并集也能被操作了,于是 d p [ i ] = 1 \tt dp[i]=1 dp[i]=1 。
某个字符 z \tt z z 能成为最终字符,就意味着 d p [ U − z ] = 1 \tt dp[U-z]=1 dp[U−z]=1 ,在最后一步,除了 z \tt z z 以外的字符能全部变成 z \tt z z。
此时的复杂度是 Θ ( 3 ∣ C ∣ ) \tt \Theta(3^{|C|}) Θ(3∣C∣) 级别的,达不到需求。瓶颈就在第四条性质,也就是第二条转移上。
我们可以找个性质优化一下。我们发现对于第二种转移,找 i \tt i i 的子集 S 1 \tt S_1 S1, S 2 \tt S_2 S2 ,如果字符集 S 1 \tt S_1 S1 的右端点小于 S 2 \tt S_2 S2 的左端点,或 S 1 \tt S_1 S1 的左端点大于 S 2 \tt S_2 S2 的右端点,这样的转移才需要考虑。否则的话,可以把 S 1 \tt S_1 S1 进行操作,变成 S 2 \tt S_2 S2 的一些字符,最终把 S 2 \tt S_2 S2 “吞”掉,表现为第一种转移。
原因在于,一个字符集能被操作的本质是,在它的最小被覆盖区间内,它自己的浓度大于等于
k
\tt k
k 。如果两种字符集分别能被操作,且彼此有交的话,一个吞掉另一个后,浓度只会增大。浓度增大后,就更能被操作了,这个不难理解。

因此,我们把每种字符按照最左位置排序,选
i
\tt i
i 的子集时,就只选前缀,这样就把复杂度降成了
Θ
(
∣
C
∣
2
∣
C
∣
)
\tt \Theta(|C|2^{|C|})
Θ(∣C∣2∣C∣) 。
CODE
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 5005
#define ENDL putchar('\n')
#define LL long long
#define DB double
#define lowbit(x) ((-x) & (x))
LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f * x;
}
int n,m,i,j,s,o,k;
char ss[MAXN];
int a[MAXN];
char denote[30];
int pos[257];
short ll[1<<20|5],rr[1<<20|5],cnt[1<<20|5];
bool dp[1<<20|5];
int b[30];
bool cmp(int a,int b) {
return ll[1<<a] < ll[1<<b];
}
int main() {
n = read();
LL ka = read(),kb = read();
int tool_0_cnt = -1;
for(char i = 'a';i <= 'z';i ++) {
if(i != 't' && i != 'r' && i != 'y' && i != 'g' && i != 'u' && i != 'b') {
pos[i] = ++ tool_0_cnt;
denote[tool_0_cnt] = i;
b[tool_0_cnt] = tool_0_cnt;
}
}
for(int i = 0;i < 20;i ++) ll[1<<i] = n+1;
scanf("%s",ss + 1);
for(int i = 1;i <= n;i ++) a[i] = pos[ss[i]];
int ALL = 0;
for(int i = 1;i <= n;i ++) {
ll[1<<a[i]] = min(ll[1<<a[i]],(short)i);
rr[1<<a[i]] = i; cnt[1<<a[i]] ++;
ALL |= (1<<a[i]);
}
sort(b,b + 20,cmp);
int tp = 1<<20;
for(int i = 1;i < tp;i ++) {
if(i-lowbit(i)) {
ll[i] = min(ll[i-lowbit(i)],ll[lowbit(i)]);
rr[i] = max(rr[i-lowbit(i)],rr[lowbit(i)]);
cnt[i] = cnt[i-lowbit(i)] + cnt[lowbit(i)];
}
}
dp[0] = 1;
for(int i = 1;i < tp;i ++) {
if((rr[i]-ll[i]+1) * ka <= cnt[i] * kb && (i&ALL) == i) {
if(i == lowbit(i)) {
dp[i] = 1;
}
else {
for(int j = 0;j < 20;j ++) {
if(i & (1<<j)) dp[i] |= dp[i^(1<<j)];
}
}
}
if((i&ALL) == i) {
if(i ^ lowbit(i)) {
int S = 0;
for(int j = 0;j < 20;j ++) {
S = (S|(1<<b[j])) & i;
if(S != i && S) dp[i] |= dp[i^S] & dp[S];
}
}
}
}
int as = 0;
for(int i = 0;i < 20;i ++) if(dp[ALL^(1<<i)]) as ++;
printf("%d",as);
for(int i = 0;i < 20;i ++) if(dp[ALL^(1<<i)]) printf(" %c",denote[i]);
ENDL;
return 0;
}

浙公网安备 33010602011771号