二进制优化多重背包
二进制优化原理(不难证明)
对于一个整数S,不妨设 S = \((1101011)_{2}\) 为 7位2进制整数,
我们可以由{\({2^0,2^1,2^2,2^3,2^4,2^5,2^6,2^7}\)}(集合中的元素要么选,要么不选)
组合成[0, S]内的任意一个整数
Case 1
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 12000;
int v[N], w[N];
int f[N];
int n, m, cnt;
int main()
{
cin >> n >> m;
for (int i = 0; i < n; i ++ )
{
int a, b, s;
cin >> a >> b >> s;
int k = 1;
while(k < s)
{
cnt ++;
v[cnt] = a * k;
w[cnt] = b * k;
s -= k;
k *= 2;
}
if(s > 0)
{
cnt ++;
v[cnt] = a * s;
w[cnt] = b * s;
}
}
n = cnt;
for(int i = 1; i <= n; i ++)
for(int j = m; j >= v[i]; j --)
f[j] = max(f[j], f[j - v[i]] + w[i]);
cout << f[m] << endl;
return 0;
}
Case 2
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
const int N = 2010;
int n, m;
int f[N];
struct GOOD
{
int v, w;
};
int main()
{
cin >> n >> m;
vector<GOOD> goods;
for(int i = 0; i < n; i ++)
{
int a, b, s;
cin >> a >> b >> s;
int k = 1;
while(k < s)
{
goods.push_back({k * a, k * b});
s -= k, k *= 2;
}
if(s > 0) goods.push_back({s * a, s * b});
}
for(auto good : goods)
for(int j = m; j >= good.v; j --)
f[j] = max(f[j], f[j - good.v] + good.w);
cout << f[m] << endl;
return 0;
}