虚拟地址与物理地址之间的关系

Windows系统中,任何一个进程都被赋予其自己的虚拟地址空间,该虚拟地址空间覆盖了一个相当大的范围,对于32位进程,其地址空间为232=4,294,967,296 Byte,这使得一个指针可以使用从0x00000000到0xFFFFFFFF的4GB范围之内的任何一个值。虽然每一个32位进程可使用4GB的地址空间,但并不意味着每一个进程实际拥有4GB的 物理地址空间,该地址空间仅仅是一个虚拟地址空间,此虚拟地址空间只是内存地址的一个范围。进程实际可以得到的物理内存要远小于其虚拟地址空间。进程的虚 拟地址空间是为每个进程所私有的,在进程内运行的线程对内存空间的访问都被限制在调用进程之内,而不能访问属于其他进程的内存空间。这样,在不同的进程中 可以使用相同地址的指针来指向属于各自调用进程的内容而不会由此引起混乱。

 

关于地址空间

一个比较抽象的概念,我们可以把它想象成一个长数组,每个数组元素占一个字节;而这个数组长度将由地址空间长度决定,如32位的地址空间的大小将为2^32个字节(4GB),而64位的地址空间大小为2^64个字节(理论上可看作是无限大)。

这也就解析了,在32的操作系统中,为什么最大只能支持4GB的有效内存。也就是,超出了4GB后的内存都不会在寻址范围内,因此变成了剩余的内存资源。

 

物理地址(Physical Address Space)

物理地址空间是实在的存在于计算机中的一个实体,在每一台计算机中保持唯一独立性。我们可以称它为物理内存;如在32位的机器上,物理空间的大小理论上可以达到2^32字节(4GB),但如果实际装在的内存不够4GB,那么有效的物理地址将会更少。例如,安装了1GB的内存的机器上,真正有用的物理地址空间应该是0x00000000~0x3FFFFFFF,余下部分在实际寻址中无效。

 

虚拟地址(Virtual Address Space)

虚拟地址并不真实存在于计算机中。每个进程都分配有自己的虚拟空间,而且只能访问自己被分配使用的空间。理论上,虚拟空间受物理内存大小的限制,如给有4GB内存,那么虚拟地址空间的地址范围就应该是0x00000000~0xFFFFFFFF(4GB)。

为什么每个进程的虚拟地址空间范围都可以这么大呢,这涉及到地址的映射机制;程序实际运行时,系统会先将虚拟地址映射到物理地址中的范围。

另外一个概念:虚拟内存。虚拟内存是内存中的一片连续地址空间。在物理存储位置上的意义,不一定就是指物理内存,可能也是在硬盘上开辟的一篇地址空间。

 

现代操作系统普遍采用虚拟内存管理(Virtual Memory Management)机制,这需要处理器中的MMU(Memory Management Unit,内存管理单元)提供支持,本节简要介绍MMU的作用。

首先引入两个概念,虚拟地址和物理地址。如果处理器没有MMU,或者有MMU但没有启用,CPU执行单元发出的内存地址将直接传到芯片引脚上,被内存芯片(以下称为物理内存,以便与虚拟内存区分)接收,这称为物理地址(Physical Address,以下简称PA).

如果处理器启用了MMU,CPU执行单元发出的内存地址将被MMU截获,从CPU到MMU的地址称为虚拟地址(Virtual Address,以下简称VA),而MMU将这个地址翻译成另一个地址发到CPU芯片的外部地址引脚上,也就是将VA映射成PA.

 

如果是32位处理器,则内地址总线是32位的,与CPU执行单元相连(图中只是示意性地画了4条地址线),而经过MMU转换之后的外地址总线则不一定是32位的。也就是说,虚拟地址空间和物理地址空间是独立的,32位处理器的虚拟地址空间是4GB,而物理地址空间既可以大于也可以小于4GB。

MMU将VA映射到PA是以页(Page)为单位的,32位处理器的页尺寸通常是4KB。例如,MMU可以通过一个映射项将VA的一页0xb7001000~0xb7001fff映射到PA的一页0x2000~0x2fff,如果CPU执行单元要访问虚拟地址0xb7001008,则实际访问到的物理地址是0x2008。物理内存中的页称为物理页面或者页帧(Page Frame)。虚拟内存的哪个页面映射到物理内存的哪个页帧是通过页表(Page Table)来描述的,页表保存在物理内存中,MMU会查找页表来确定一个VA应该映射到什么PA。

操作系统和MMU是这样配合的:

  1. 操作系统在初始化或分配、释放内存时会执行一些指令在物理内存中填写页表,然后用指令设置MMU,告诉MMU页表在物理内存中的什么位置。

  2. 设置好之后,CPU每次执行访问内存的指令都会自动引发MMU做查表和地址转换操作,地址转换操作由硬件自动完成,不需要用指令控制MMU去做。

我们在程序中使用的变量和函数都有各自的地址,程序被编译后,这些地址就成了指令中的地址,指令中的地址被CPU解释执行,就成了CPU执行单元发出的内存地址,所以在启用MMU的情况下,程序中使用的地址都是虚拟地址,都会引发MMU做查表和地址转换操作。那为什么要设计这么复杂的内存管理机制呢?多了一层VA到PA的转换到底换来了什么好处?All problems in computer science can be solved by another level of indirection.还记得这句话吗?多了一层间接必然是为了解决什么问题的,等讲完了必要的预备知识之后,将在第 5 节 “虚拟内存管理”讨论虚拟内存管理机制的作用。

MMU除了做地址转换之外,还提供内存保护机制。各种体系结构都有用户模式(User Mode)和特权模式(Privileged Mode)之分,操作系统可以在页表中设置每个内存页面的访问权限,有些页面不允许访问,有些页面只有在CPU处于特权模式时才允许访问,有些页面在用户模式和特权模式都可以访问,访问权限又分为可读、可写和可执行三种。这样设定好之后,当CPU要访问一个VA时,MMU会检查CPU当前处于用户模式还是特权模式,访问内存的目的是读数据、写数据还是取指令,如果和操作系统设定的页面权限相符,就允许访问,把它转换成PA,否则不允许访问,产生一个异常(Exception)。异常的处理过程和中断类似,不同的是中断由外部设备产生而异常由CPU内部产生,中断产生的原因和CPU当前执行的指令无关,而异常的产生就是由于CPU当前执行的指令出了问题,例如访问内存的指令被MMU检查出权限错误,除法指令的除数为0等都会产生异常。

 

通常操作系统把虚拟地址空间划分为用户空间和内核空间,例如x86平台的Linux系统虚拟地址空间是0x00000000~0xffffffff,前3GB(0x00000000~0xbfffffff)是用户空间,后1GB(0xc0000000~0xffffffff)是内核空间。用户程序加载到用户空间,在用户模式下执行,不能访问内核中的数据,也不能跳转到内核代码中执行。这样可以保护内核,如果一个进程访问了非法地址,顶多这一个进程崩溃,而不会影响到内核和整个系统的稳定性。CPU在产生中断或异常时不仅会跳转到中断或异常服务程序,还会自动切换模式,从用户模式切换到特权模式,因此从中断或异常服务程序可以跳转到内核代码中执行。事实上,整个内核就是由各种中断和异常处理程序组成的。总结一下:在正常情况下处理器在用户模式执行用户程序,在中断或异常情况下处理器切换到特权模式执行内核程序,处理完中断或异常之后再返回用户模式继续执行用户程序。

段错误我们已经遇到过很多次了,它是这样产生的:

  1. 用户程序要访问的一个VA,经MMU检查无权访问。

  2. MMU产生一个异常,CPU从用户模式切换到特权模式,跳转到内核代码中执行异常服务程序。

  3. 内核把这个异常解释为段错误,把引发异常的进程终止掉。

——————————————————————————————————————————————————————————————————

 

个人小结:cpu发出指令指定一个虚拟地址,通过MMU进行管理和转换成物理地址,然后发送到物理地址。

posted @ 2016-09-06 14:07  DavidWei0504  阅读(3935)  评论(0编辑  收藏  举报