【PTA-A】1103 Integer Factorization (30 分)(DFS)
The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K−P factorization of N for any positive integers N, K and P.
Input Specification:
Each input file contains one test case which gives in a line the three positive integers N (≤400), K (≤N) and P (1<P≤7). The numbers in a line are separated by a space.
Output Specification:
For each case, if the solution exists, output in the format:
N = n[1]^P + ... n[K]^P
where n[i] (i = 1, ..., K) is the i-th factor. All the factors must be printed in non-increasing order.
Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 122+42+22+22+12, or 112+62+22+22+22, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a1,a2,⋯,aK } is said to be larger than { b1,b2,⋯,bK } if there exists 1≤L≤K such that ai=bi for i<L and aL>bL.
If there is no solution, simple output Impossible.
Sample Input 1:
169 5 2
Sample Output 1:
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2
Sample Input 2:
169 167 3
Sample Output 2:
Impossible
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
int n, p, k, maxdi=-1;
vector<int> fac, ans, temp;
int power(int x) {
int answer = 1;
for (int i = 0; i < p; i++) {
answer *= x;
}
return answer;
}
void init() {
int i = 0, temp = 0;
while (temp <= n) {
fac.push_back(temp);
temp = power(++i);
}
}
void DFS(int index, int nowK, int sum, int di) {
if (sum == n && nowK == k) {
if (di > maxdi) {
ans = temp;
maxdi = di;
}
return;
}
if (sum > n || nowK > k)return;
if (index - 1 >= 0) {
temp.push_back(index);
DFS(index, nowK + 1, sum + fac[index], di + index);
temp.pop_back();
DFS(index - 1, nowK, sum, di);
}
}
int main() {
cin >> n >> k >> p;
init();
DFS(fac.size() - 1, 0, 0, 0);
if (maxdi == -1)cout << "Impossible";
else {
printf("%d = %d^%d", n, ans[0], p);
for (int i = 1; i < ans.size(); i++)
printf(" + %d^%d", ans[i], p);
}
return 0;
}

浙公网安备 33010602011771号