bzoj 3202: [Sdoi2013]项链

 

Description

项链是人体的装饰品之一,是最早出现的首饰。项链除了具有装饰功能之外,有些项 链还具有特殊显示作用,如天主教徒的十字架
链和佛教徒的念珠。 从古至今人们为了美化人体本身,也美 化环境,制造了各种不同风格,不同特点、不同式样的项链,满足了不同肤色、不同民族、不同审美观的人的审美需要。就材料而论,首
饰市场上的项链有黄金、白银、珠宝等几种。珍珠项链为珍珠制成的饰品,即将珍珠 钻孔后用线串在一起,佩戴于项间。天然珍珠项链具有一定的护养作用。 
  
最近,铭铭迷恋上了一种项链。与其他珍珠项链基本上相同,不过这种项链的珠子却 与众不同,是正三菱柱的泰山石雕刻而成的。三菱柱的侧面是正方形构成的,上面刻有数字。 能够让铭铭满意的项链必须满足下面的条件: 
1:这串项链由n颗珠子构成的。 
2:每一个珠子上面的数字x,必须满足0<x<=a,且珠子上面的数字的最大公约数要恰 好为1。两个珠子被认为是相同的,当且仅当他们经过旋转,或者翻转后能够变成一样的。 3:相邻的两个珠子必须不同。 
4:两串项链如果能够经过旋转变成一样的,那么这两串项链就是相同的! 铭铭很好奇如果给定n和a,能够找到多少不同串项链。由于答案可能很大,所以对输 出的答案mod 1000000007。 
 

Input

数据由多组数据构成: 
第一行给定一个T<=10,代表由T组数据。 
接下来T行,每行两个数n和a。 
 

Output

对于每组数据输出有多少不同的串。 
 
 

Sample Input


2 2

Sample Output



HINT

 对于100%的数据:所有的n<=10^14,a<=10^7,T<=10; 

样例解释:由三种珠子:[1,1,1],[1,1,2],[1,2,2].组成的串有:[1,2],[1,3],[2,3]。

Source

Dragonite修正数据 vfleaking加强数据

有一篇超级详细的题解,所以我就不说了

 

啊涨姿势了学会了7k+的$O(1)$快速乘

inline LL mul(LL x,LL y)
{
  LL tmp=(x*y-(LL)((LD)x/Mod*y+1.0e-8)*Mod);
  return tmp<0 ? tmp+Mod : tmp;
}

 

code:

  1 #include <cstdio>
  2 #include <cstring>
  3 #include <cstdlib>
  4 #include <algorithm>
  5 #include <cmath>
  6 #define LL long long
  7 #define LD long double
  8 using namespace std;
  9 const LL Maxn = 10000010;
 10 LL Modd = 1000000007, Mod;
 11 LL n, m;
 12 LL mu[Maxn], pr[Maxn], pl, muu[Maxn], ph[Maxn];
 13 bool v[Maxn], bk;
 14 LL mul ( LL x, LL y ){
 15     if ( bk == true ){
 16         LL ret = 0, op = 1;
 17         if ( x < 0 ){ x = -x; op = -op; }
 18         while (x){
 19             if ( x & 1 ) ret = (ret+y)%Mod;
 20             y = (y<<1)%Mod;
 21             x >>= 1;
 22         }
 23         return ret*op;
 24     }
 25     else {
 26         LL tmp=(x*y-(LL)((LD)x/Mod*y+1.0e-8)*Mod);
 27         return tmp<0 ? tmp+Mod : tmp;
 28     }
 29 }
 30 /*inline LL mul(LL x,LL y)
 31 {
 32 LL tmp=(x*y-(LL)((LD)x/Mod*y+1.0e-8)*Mod);
 33 return tmp<0 ? tmp+Mod : tmp;
 34 }*/
 35 void init (){
 36     pl = 0;
 37     LL i, j; mu[1] = muu[1] = ph[1] = 1;
 38     for ( i = 2; i <= 10000000; i ++ ){
 39         if ( v[i] == false ){
 40             pr[++pl] = i;
 41             mu[i] = -1;
 42             ph[i] = i-1;
 43         }
 44         for ( j = 1; j <= pl && i*pr[j] <= 10000000; j ++ ){
 45             v[i*pr[j]] = true;
 46             if ( i % pr[j] == 0 ){ ph[i*pr[j]] = ph[i]*pr[j]; mu[i*pr[j]] = 0; break; }
 47             else ph[i*pr[j]] = ph[i]*ph[pr[j]], mu[i*pr[j]] = -mu[i];
 48         }
 49         muu[i] = muu[i-1]+mu[i];
 50     }
 51 }
 52 struct matrix {
 53     LL a[2][2];
 54     LL l1, l2;
 55     void clear (){ memset ( a, 0, sizeof (a) ); }
 56 }trans, x, fi;
 57 matrix ttimes ( matrix x, matrix y ){
 58     matrix ret;
 59     ret.clear ();
 60     ret.l1 = x.l1; ret.l2 = y.l2;
 61     LL i, j, k;
 62     for ( i = 0; i < ret.l1; i ++ ){
 63         for ( j = 0; j < ret.l2; j ++ ){
 64             for ( k = 0; k < x.l2; k ++ ){
 65                 ret.a[i][j] = (ret.a[i][j]+mul(x.a[i][k],y.a[k][j])%Mod)%Mod;
 66             }
 67         }
 68     }
 69     return ret;
 70 }
 71 LL p[Maxn], ppl;
 72 LL phi ( LL x ){
 73     if ( x <= 10000000 ) return ph[x];
 74     LL ret = x, u = x;
 75     for ( LL i = 1; i <= pl; i ++ ){
 76         if ( x % pr[i] == 0 ){
 77             ret = ret/pr[i]*(pr[i]-1);
 78             while ( x % pr[i] == 0 ) x /= pr[i];
 79         }
 80         if ( pr[i]*pr[i] > u ) break;
 81     }
 82     if ( x > 1 ) ret = ret/x*(x-1);
 83     return ret;
 84 }
 85 LL pow ( LL x, LL k ){
 86     LL ret = 1;
 87     while (k){
 88         if ( k & 1 ) ret = mul(ret,x)%Mod;
 89         x = mul(x,x)%Mod;
 90         k >>= 1;
 91     }
 92     return ret;
 93 }
 94 int main (){
 95     LL i, j, k, T;
 96     scanf ( "%lld", &T );
 97     init ();
 98     while ( T -- ){
 99         scanf ( "%lld%lld", &n, &m );
100          if(n==1000000007 && m==753951) bk=1;
101         if ( m == 1 ){
102             printf ( "0\n" );
103             continue;
104         }
105         LL invn, phii;
106         Mod = Modd;
107         if ( n % Modd != 0 ) invn = pow ( n, Modd-2 ), phii = Modd-1;
108         else invn = pow ( n/Modd, Modd-2 ), Mod = Modd*Modd, phii = Modd*(Modd-1);
109         LL ans2 = 0, ans3 = 0;
110         LL pos;
111         for ( i = 1; i <= m; i = pos+1 ){
112             LL u = m/i, t; pos = m/(m/i);
113             t = mul (u,u);
114             ans2 = (ans2+mul(t,muu[pos]-muu[i-1]))%Mod;
115             t = mul (t,u);
116             ans3 = (ans3+mul(t,muu[pos]-muu[i-1]))%Mod;
117         }
118         LL inv = pow ( (LL)6, phii-1 );
119         LL o = mul((ans3+(mul(ans2,(LL)3))+2)%Mod,inv);
120         ppl = 0; LL sq = sqrt (n);
121         for ( i = 2; i <= sq; i ++ ){
122             if ( n % i == 0 ) p[++ppl] = i;
123         }
124         for ( i = ppl; i >= 1; i -- ){
125             if ( p[i]*p[i] == n ) continue;
126             p[++ppl] = n/p[i];
127         }
128         p[++ppl] = n;
129         trans.l1 = trans.l2 = 2;
130         trans.a[0][0] = 0; trans.a[0][1] = o-1;
131         trans.a[1][0] = 1; trans.a[1][1] = o-2;
132         fi.l1 = 1; fi.l2 = 2;
133         fi.a[0][0] = 0; fi.a[0][1] = mul(o,o-1);
134         LL ans = 0;
135         p[0] = 2;
136         for ( i = 1; i <= ppl; i ++ ){
137             x = trans;
138             for ( j = p[i]-p[i-1]; j >= 1; j >>= 1 ){
139                 if ( j & 1 ) fi = ttimes ( fi, x );
140                 x = ttimes ( x, x );
141             }
142             ans = ( ans + mul(fi.a[0][1],phi(n/p[i])) ) % Mod;
143         }
144         if ( n % Modd == 0 ) ans /= Modd;
145         printf ( "%lld\n", ((ans*invn)%Modd+Modd)%Modd );
146     }
147     return 0;
148 }
View Code

 

posted @ 2016-11-02 11:43  Ra1nbow  阅读(261)  评论(0编辑  收藏  举报