评价指标

IoUs, PA_Recall, Precision计算,来源于憨批的语义分割3——unet模型详解以及训练自己的unet模型(划分斑马线)_Bubbliiiing的博客-CSDN博客_憨批语义分割的github
import csv
import os
from os.path import join

import matplotlib.pyplot as plt
import numpy as np
from tensorflow.keras import backend
from PIL import Image


def Iou_score(smooth = 1e-5, threhold = 0.5):
    def _Iou_score(y_true, y_pred):
        # score calculation
        y_pred = backend.greater(y_pred, threhold)
        y_pred = backend.cast(y_pred, backend.floatx())
        intersection = backend.sum(y_true[...,:-1] * y_pred, axis=[0,1,2])
        union = backend.sum(y_true[...,:-1] + y_pred, axis=[0,1,2]) - intersection

        score = (intersection + smooth) / (union + smooth)
        return score
    return _Iou_score

def f_score(beta=1, smooth = 1e-5, threhold = 0.5):
    def _f_score(y_true, y_pred):
        y_pred = backend.greater(y_pred, threhold)
        y_pred = backend.cast(y_pred, backend.floatx())

        tp = backend.sum(y_true[..., :-1] * y_pred, axis=[0,1,2])
        fp = backend.sum(y_pred         , axis=[0, 1, 2]) - tp
        fn = backend.sum(y_true[..., :-1], axis=[0, 1, 2]) - tp

        score = ((1 + beta ** 2) * tp + smooth) \
                / ((1 + beta ** 2) * tp + beta ** 2 * fn + fp + smooth)
        return score
    return _f_score

# 设标签宽W,长H
def fast_hist(a, b, n):
    #--------------------------------------------------------------------------------#
    #   a是转化成一维数组的标签,形状(H×W,);b是转化成一维数组的预测结果,形状(H×W,)
    #--------------------------------------------------------------------------------#
    k = (a >= 0) & (a < n)
    #--------------------------------------------------------------------------------#
    #   np.bincount计算了从0到n**2-1这n**2个数中每个数出现的次数,返回值形状(n, n)
    #   返回中,写对角线上的为分类正确的像素点
    #--------------------------------------------------------------------------------#
    return np.bincount(n * a[k].astype(int) + b[k], minlength=n ** 2).reshape(n, n)  

def per_class_iu(hist):
    return np.diag(hist) / np.maximum((hist.sum(1) + hist.sum(0) - np.diag(hist)), 1) 

def per_class_PA_Recall(hist):
    return np.diag(hist) / np.maximum(hist.sum(1), 1) 

def per_class_Precision(hist):
    return np.diag(hist) / np.maximum(hist.sum(0), 1) 

def per_Accuracy(hist):
    return np.sum(np.diag(hist)) / np.maximum(np.sum(hist), 1) 

def compute_mIoU(gt_dir, pred_dir, png_name_list, num_classes, name_classes=None):  
    print('Num classes', num_classes)  
    #-----------------------------------------#
    #   创建一个全是0的矩阵,是一个混淆矩阵
    #-----------------------------------------#
    hist = np.zeros((num_classes, num_classes))
    
    #------------------------------------------------#
    #   获得验证集标签路径列表,方便直接读取
    #   获得验证集图像分割结果路径列表,方便直接读取
    #------------------------------------------------#
    gt_imgs     = [join(gt_dir, x+".png" ) for x in png_name_list]  
    pred_imgs   = [join(pred_dir, x+".png") for x in png_name_list]  

    #------------------------------------------------#
    #   读取每一个(图片-标签)对
    #------------------------------------------------#
    for ind in range(len(gt_imgs)): 
        #------------------------------------------------#
        #   读取一张图像分割结果,转化成numpy数组
        #------------------------------------------------#
        pred = np.array(Image.open(pred_imgs[ind]))  
        #------------------------------------------------#
        #   读取一张对应的标签,转化成numpy数组
        #------------------------------------------------#
        print(gt_imgs[ind])
        label = np.array(Image.open(gt_imgs[ind]))
        #---------------------------------------------------------#
        #根据自己的标签修改
        label[label==255]=1
        label[label==200]=2
        #---------------------------------------------------------#
        # 如果图像分割结果与标签的大小不一样,这张图片就不计算
        if len(label.flatten()) != len(pred.flatten()):  
            print(
                'Skipping: len(gt) = {:d}, len(pred) = {:d}, {:s}, {:s}'.format(
                    len(label.flatten()), len(pred.flatten()), gt_imgs[ind],
                    pred_imgs[ind]))
            continue

        #------------------------------------------------#
        #   对一张图片计算21×21的hist矩阵,并累加
        #------------------------------------------------#
        hist += fast_hist(label.flatten(), pred.flatten(), num_classes)  
        # 每计算10张就输出一下目前已计算的图片中所有类别平均的mIoU值
        if name_classes is not None and ind > 0 and ind % 10 == 0: 
            print('{:d} / {:d}: mIou-{:0.2f}%; mPA-{:0.2f}%; Accuracy-{:0.2f}%'.format(
                    ind, 
                    len(gt_imgs),
                    100 * np.nanmean(per_class_iu(hist)),
                    100 * np.nanmean(per_class_PA_Recall(hist)),
                    100 * per_Accuracy(hist)
                )
            )
    #------------------------------------------------#
    #   计算所有验证集图片的逐类别mIoU值
    #------------------------------------------------#
    IoUs        = per_class_iu(hist)
    PA_Recall   = per_class_PA_Recall(hist)
    Precision   = per_class_Precision(hist)
    #------------------------------------------------#
    #   逐类别输出一下mIoU值
    #------------------------------------------------#
    if name_classes is not None:
        for ind_class in range(num_classes):
            print('===>' + name_classes[ind_class] + ':\tIou-' + str(round(IoUs[ind_class] * 100, 2)) \
                + '; Recall (equal to the PA)-' + str(round(PA_Recall[ind_class] * 100, 2))+ '; Precision-' + str(round(Precision[ind_class] * 100, 2)))

    #-----------------------------------------------------------------#
    #   在所有验证集图像上求所有类别平均的mIoU值,计算时忽略NaN值
    #-----------------------------------------------------------------#
    print('===> mIoU: ' + str(round(np.nanmean(IoUs) * 100, 2)) + '; mPA: ' + str(round(np.nanmean(PA_Recall) * 100, 2)) + '; Accuracy: ' + str(round(per_Accuracy(hist) * 100, 2)))  
    return np.array(hist, np.int), IoUs, PA_Recall, Precision

def adjust_axes(r, t, fig, axes):
    bb                  = t.get_window_extent(renderer=r)
    text_width_inches   = bb.width / fig.dpi
    current_fig_width   = fig.get_figwidth()
    new_fig_width       = current_fig_width + text_width_inches
    propotion           = new_fig_width / current_fig_width
    x_lim               = axes.get_xlim()
    axes.set_xlim([x_lim[0], x_lim[1] * propotion])

def draw_plot_func(values, name_classes, plot_title, x_label, output_path, tick_font_size = 12, plt_show = True):
    fig     = plt.gcf() 
    axes    = plt.gca()
    plt.barh(range(len(values)), values, color='royalblue')
    plt.title(plot_title, fontsize=tick_font_size + 2)
    plt.xlabel(x_label, fontsize=tick_font_size)
    plt.yticks(range(len(values)), name_classes, fontsize=tick_font_size)
    r = fig.canvas.get_renderer()
    for i, val in enumerate(values):
        str_val = " " + str(val) 
        if val < 1.0:
            str_val = " {0:.2f}".format(val)
        t = plt.text(val, i, str_val, color='royalblue', va='center', fontweight='bold')
        if i == (len(values)-1):
            adjust_axes(r, t, fig, axes)

    fig.tight_layout()
    fig.savefig(output_path)
    if plt_show:
        plt.show()
    plt.close()

def show_results(miou_out_path, hist, IoUs, PA_Recall, Precision, name_classes, tick_font_size = 12):
    draw_plot_func(IoUs, name_classes, "mIoU = {0:.2f}%".format(np.nanmean(IoUs)*100), "Intersection over Union", \
        os.path.join(miou_out_path, "mIoU.png"), tick_font_size = tick_font_size, plt_show = True)
    print("Save mIoU out to " + os.path.join(miou_out_path, "mIoU.png"))

    draw_plot_func(PA_Recall, name_classes, "mPA = {0:.2f}%".format(np.nanmean(PA_Recall)*100), "Pixel Accuracy", \
        os.path.join(miou_out_path, "mPA.png"), tick_font_size = tick_font_size, plt_show = False)
    print("Save mPA out to " + os.path.join(miou_out_path, "mPA.png"))
    
    draw_plot_func(PA_Recall, name_classes, "mRecall = {0:.2f}%".format(np.nanmean(PA_Recall)*100), "Recall", \
        os.path.join(miou_out_path, "Recall.png"), tick_font_size = tick_font_size, plt_show = False)
    print("Save Recall out to " + os.path.join(miou_out_path, "Recall.png"))

    draw_plot_func(Precision, name_classes, "mPrecision = {0:.2f}%".format(np.nanmean(Precision)*100), "Precision", \
        os.path.join(miou_out_path, "Precision.png"), tick_font_size = tick_font_size, plt_show = False)
    print("Save Precision out to " + os.path.join(miou_out_path, "Precision.png"))

    with open(os.path.join(miou_out_path, "confusion_matrix.csv"), 'w', newline='') as f:
        writer          = csv.writer(f)
        writer_list     = []
        writer_list.append([' '] + [str(c) for c in name_classes])
        for i in range(len(hist)):
            writer_list.append([name_classes[i]] + [str(x) for x in hist[i]])
        writer.writerows(writer_list)
    print("Save confusion_matrix out to " + os.path.join(miou_out_path, "confusion_matrix.csv"))
            

使用方法,可绘制柱状图

miou_out_path为存放图片地址,
name_classes为自己要分割的类,包含背景,大小为需要识别的目标数加一,目标像素外的像素都为属于背景。
hist, IoUs, PA_Recall, Precision = compute_mIoU(gt_dir, pred_dir, image_ids, num_classes, name_classes)  # 执行计算mIoU的函数
print("Get miou done.")
show_results(miou_out_path, hist, IoUs, PA_Recall, Precision, name_classes)

 

posted @ 2022-11-06 18:04  AD2017  阅读(332)  评论(0)    收藏  举报