LOJ6285 数列分块入门9
LOJ6285 数列分块入门 9
标签
- 基础分块
前言
- 我的csdn和博客园是同步的,欢迎来访danzh-博客园~
简明题意
- 给一个序列,需要查询区间中的最小众数
思路
- 首先要会写暴力。如果数据范围是1000但是有多组询问你会怎么写?先解决这个问题。我们可以开一个dp[][]数组,dp[i][j]表示区间[i,j]中的众数。具体过程是枚举所有的左端点,然后再枚举右端点,每次右端点右移就更新一下答案。
- 暴力会写了,就考虑一下这题。实际上关于众数有这样一个性质:如果已知集合a的众数是x,那么集合a并上集合b的众数要么是x,要么是b中的一个数。那么我们就可以愉快的分块了,先根据上面所说的预处理出dp[i][j]第i块到第j块的众数,那么每次查询,答案要么是中间那一整块的答案,要么是左右两边不整块的那些数。
- 所以现在问题就在求左右两边不整块的数的个数。这又是一个经典的二分问题了。直接开一个vector[]记录每一个数出现的所有位置,暴力枚举这些数,然后二分找到r和l的位置相减就可以了。
- 最后就是数有些大,可以离散化一下。
- 还有就是块的大小开成80才能AC
注意事项
- 无
总结
- 如果已知集合a的众数是x,那么集合a并上集合b的众数要么是x,要么是b中的一个数
- 求区间中数出现的次数,可以记录位置然后二分。
AC代码
#pragma GCC optimize(2)
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<vector>
#include<cstring>
#include<unordered_map>
using namespace std;
const int maxn = 1e5 + 10;
int read()
{
	int x = 0, f = 1; char ch = getchar();
	while (ch<'0' || ch>'9') { if (ch == '-')f = -1; ch = getchar(); }
	while (ch >= '0'&&ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); }
	return x * f;
}
int n, a[maxn];
int pos[maxn], len;
pair<int, int> dp[5000][5000];
vector<int> rec[maxn];//记录每个数出现的所有位置
vector<int> ls;
int mp[maxn];
int ask(int l, int r)
{
	int cur_max = dp[pos[l] + 1][pos[r] - 1].first, max_val = dp[pos[l] + 1][pos[r] - 1].second;
	for (int i = l; i <= min(pos[l] * len, r); i++)
	{
		auto& b = rec[a[i]];
		int cnt = upper_bound(b.begin(), b.end(), r) - lower_bound(b.begin(), b.end(), l);
		if (cnt > cur_max || (cnt == cur_max && a[i] < max_val))
			cur_max = cnt, max_val = a[i];
	}
	if (pos[l] != pos[r])
	{
		for (int i = pos[r] * len - len + 1; i <= r; i++)
		{
			auto& b = rec[a[i]];
			int cnt = upper_bound(b.begin(), b.end(), r) - lower_bound(b.begin(), b.end(), l);
			if (cnt > cur_max || (cnt == cur_max && a[i] < max_val))
				cur_max = cnt, max_val = a[i];
		}
	}
	return max_val;
}
void solve() 
{
	scanf("%d", &n);
	len = 80;
	for (int i = 1; i <= n; i++)
		a[i] = read(), pos[i] = (i - 1) / len + 1, ls.push_back(a[i]);
	sort(ls.begin(), ls.end());
	int ls_len = unique(ls.begin(), ls.end()) - ls.begin();
	for (int i = 1; i <= n; i++)
	{
		int t = lower_bound(ls.begin(), ls.begin() + ls_len, a[i]) - ls.begin() + 1;
		mp[t] = a[i];
		a[i] = t;
		rec[a[i]].push_back(i);
	}
	for (auto& it : rec)
		sort(it.begin(), it.end());
	//预处理dp
	int cnt[maxn];//记录一下每个数出现的次数
	for (int i = 1; i <= pos[n]; i++)//枚举起始块
	{
		int cur_max = -1e9, max_val;//分别是当前最多出现的次数、最多出现次数的那个数
		memset(cnt, 0, sizeof cnt);
		for (int j = i * len - len + 1; j <= n; j++)//枚举从第i块开始的每一个数
		{
			cnt[a[j]]++;
			if (cnt[a[j]] > cur_max || (cnt[a[j]] == cur_max && a[j] < max_val))//a[j]出现的次数多,或者a[j]出现的次数一样但更小,就更新
				cur_max = cnt[a[j]], max_val = a[j];
			dp[i][pos[j]].first = cur_max, dp[i][pos[j]].second = max_val;
		}
	}
	for (int i = 1; i <= n; i++) 
	{
		int l, r;
		l = read(), r = read();
		printf("%d\n", mp[ask(l, r)]);
	}
}
int main() {
	freopen("Testin.txt", "r", stdin);
	freopen("Testout.txt", "w", stdout);
	solve();
	return 0;
}
作者:danzh
QQ:1244536605
CSDN(和博客园同步):https://blog.csdn.net/weixin_42431507
-----------------------------------------------------------------------------------------------
朋友们,虽然这个世界日益浮躁起来,只要能够为了当时纯粹的梦想和感动坚持努力下去,不管其
它人怎么样,我们也能够保持自己的本色走下去。
—clj

 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号