最长回文子串的动态规划写法
最长回文子串O(n^2)的动态规划方程
用f[x][y] 表示从字符串下标x到下标y的回文长度
那么如果要求连续的回文子串则如果s[x] != s[y] f[x][y] = 0; 如果相等则 如果f[x+1][y-1] > 0 则f[x][y] = f[x+1][y-1] + 2
由于这里出现了x+1跟y-1的情况,所以x,y的距离至少为1
int f[2002][2002]; class Solution { public: int longestPalindrome(string word1, string word2) { string words = word1 + word2; memset(f, 0, sizeof(f)); int len = words.length(); for (int i = 0; i <= len; ++i) f[i][i] = 1; int maxVal = 0; for (int i = 1; i < len; ++i) { for (int j = 0; j < len - i; ++j) {if (words[j] == words[j + i] && f[j + 1][j + i - 1] > 0) { f[j][j + i] = f[j + 1][j + i - 1] + 2; maxVal = max(maxVal, f[j][j+i]); } } } return maxVal; } };
那么如果不是求连续的回文子串则给代码增加对应的判断即可
int f[2002][2002]; class Solution { public: int longestPalindrome(string word1, string word2) { string words = word1 + word2; memset(f, 0, sizeof(f)); int len = words.length(); for (int i = 0; i <= len; ++i) f[i][i] = 1; int maxVal = 0; for (int i = 1; i < len; ++i) { for (int j = 0; j < len - i; ++j) { f[j][j+i] = max(f[j+1][j+i], f[j][j+i-1]); if (words[j] == words[j + i]) { f[j][j + i] = f[j + 1][j + i - 1] + 2; maxVal = max(maxVal, f[j][j+i]); } } } return maxVal; } };
leetcode的5688即求最长回文子串可用如上的解法
int f[2002][2002]; class Solution { public: int longestPalindrome(string word1, string word2) { string words = word1 + word2; memset(f, 0, sizeof(f)); int len = words.length(); for (int i = 0; i <= len; ++i) f[i][i] = 1; int maxVal = 0; for (int i = 1; i < len; ++i) { for (int j = 0; j < len - i; ++j) { f[j][j+i] = max(f[j+1][j+i], f[j][j+i-1]); if (words[j] == words[j + i]) { f[j][j + i] = f[j + 1][j + i - 1] + 2; if (j < word1.length() && j + i >= word1.length()) maxVal = max(maxVal, f[j][j+i]); } } } return maxVal; } };
浙公网安备 33010602011771号