• 博客园logo
  • 会员
  • 众包
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • HarmonyOS
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录

cynchanpin

  • 博客园
  • 联系
  • 订阅
  • 管理

View Post

3D打印技术之切片引擎(6)

【此系列文章基于熔融沉积( fused depostion modeling, FDM )成形工艺】
这一篇文章说一下填充算法中的网格填充。网格填充在现有的较为成熟的引擎中是非常普遍的:skeinforge从扫描线的连续性上考虑採用的四边形填充,看下图:
这里写图片描写叙述
打印顺序:a→b→c→d→e→f→g→h→i→j→k→l→⋯→t→a所以打印能够以行为单位进行,每两行是一笔画下来的。
slice3r从模型的柔韧性上考虑採用的是六边形填充(蜂窝填充)。cura从打印速度及开发成本上考虑则主要採用的是线填充(不知道如今是否还是这样。去年的时候cura因此打印质量不如skeinforge和slice3r)。我的上一家雇主,为了实现建筑打印,从模型硬度上考虑则须要实现三角形填充(理论上讲三角形填充也不是最合适,下文将提到)。


为什么那么多切片程序都默认网格填充。非常大原因是它能够不做不论什么改变的兼顾各种拓扑结构,连续性强,平均长度和方差都相对符合打印机的基本要求(请參看第一讲切片引擎的基本要求),并且开发起来也相对easy。
在我的程序里。不局限于是多边形填充。理论上能够是随意填充图案的,动态载入图案。然后动态拼接成网状。我的方案是先把基本图形单元存入xml,然后在程序中像拼地板砖一样把它扩展,最后就实现了网格填充。xml文件格式例如以下:

<?

xml version="1.0" encoding="utf-8" ?> <Rectangle LineCount="3" XVol="0.1" YVol="0.1" Angle="30"> <Line> <Begin x="0.10" y="0.10"/> <End x="0.10" y="0.00"/> </Line> <Line> <Begin x="0.10" y="0.00"/> <End x="0.00" y="0.00"/> </Line> <Line> <Begin x="0.10" y="0.00"/> <End x="0.00" y="0.10"/> </Line> </Rectangle>

这是正三角形填充的一个基本图元,当中LineCount是图元中的线段数。XVol是线段集合中x的最大值。Angle为偏转角度,这个參数非常关键。由于非常多不规则图形不太方便xy轴正方向的拼接,须要拼接好然后做一定角度的旋转变换。以下的xml代码是正六边形填充的基本图元。

<?xml version="1.0" encoding="utf-8" ?>
<Rectangle LineCount="6" XVol="3.00" YVol="1.73" Angle="0">
    <Line>
        <Begin x="0.00" y="0.87"/>
        <End x="1.00" y="0.87"/>
    </Line>

    <Line>
        <Begin x="1.00" y="0.87"/>
        <End x="1.50" y="1.73"/>
    </Line>

    <Line>
        <Begin x="1.00" y="0.87"/>
        <End x="1.50" y="0.00"/>
    </Line>

    <Line>
        <Begin x="1.50" y="0.00"/>
        <End x="2.50" y="0.00"/>
    </Line>

    <Line>
        <Begin x="2.50" y="0.00"/>
        <End x="3.00" y="0.87"/>
    </Line>

    <Line>
        <Begin x="3.00" y="0.87"/>
        <End x="2.50" y="1.73"/>
    </Line>

</Rectangle>

接下来在程序中把它展开。然后用clip算法。这样就得到了全部的填充矢量的集合。以下最关键的是把这些填充矢量收尾相接的,间断次数最少的组织起来(可參考图的深度优先遍历),注意:这里填充矢量的方向在组织的时候是能够改变的。以及把长度小于阈值的边给去掉。这样就实现了最简单的网格填充。
我们平时所说的填充大都指的是二维概念上的。能不能实现三维概念上的填充,或者说是不是有必要实现三维的填充,我觉得是有必要的。就像是我上面提到的建筑材料的打印。要尽可能的硬度大。就须要实现相似于金刚石的内部结构,就应该是一个正四面体的填充。这就是一个三维概念上的填充。实现方法和上面提到的相似。仅仅只是图元扩展和clip的时间复杂度要大得多,三维的clip算法眼下有没有较为成熟的这个我本人还没有去研究过。

转载请注明出处:http://blog.csdn.net/fourierfeng/article/details/47605363

posted on 2017-06-14 18:10  cynchanpin  阅读(592)  评论(0)    收藏  举报

刷新页面返回顶部
 
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3