树状数组复习

基本原理

树状数组的原理简单来说就是利用二进制拆分区间
我们可以对一个数进行二进制分解,最多分解成log(x)个数,同样我们可以对[1,n]这个区间进行分解。也是最多log段,每次修改时我们维护受到影响的区间,然后查询时用这log个区间拼凑出一个前缀。这就是树状数组的大概思想。
最基本的作用是动态维护前缀和
在定义树状数组时,我们定义\(c[i]数组\)
\(c[x]=\sum_{i=x-lowbit(x)+1}^xa[i] \quad 即c[i]保存的时[x-lowbit(x)+1,x]中所有数的和\)
image
image

重点:
\(c[x]管辖区间的长度是多少?\)
image

操作

1.查询

x-=lowbit(x)就是下次个要跳到的地方

int ask(int x)
{
	int sum=0;
	auto lowbit=[](x){return x&-x;};
	for(;x;x-=lowbit(x))	sum+=c[x];
	return sum;	
}

2.修改
树状数组修改时要将,从当前点到根节点这以路径上的所有点都进行修改

void add(int x,int y)
{
	for(x;x<=n;x+=lowbit(x)) c[x]+=y;
}

建树过程就看成n次修改过程时间复杂度为\(O(nlogn)\)

posted @ 2024-02-04 00:51  cxy8  阅读(17)  评论(0)    收藏  举报