位运算(转)
什么是位运算?
程序中的所有数在计算机内存中都是以二进制的形式储存的。位运算说穿了,就是直接对整数在内存中的二进制位进行操作。比如,and运算本来是一个逻辑运算符,但整数与整数之间也可以进行and运算。举个例子,6的二进制是110,11的二进制是1011,那么6 and 11的结果就是2,它是二进制对应位进行逻辑运算的结果(0表示False,1表示True,空位都当0处理):
110
AND 1011
----------
0010 --> 2
各种位运算的使用
=== 1. and运算 ===
and运算通常用于二进制取位操作,例如一个数 and 1的结果就是取二进制的最末位。这可以用来判断一个整数的奇偶,二进制的最末位为0表示该数为偶数,最末位为1表示该数为奇数.
=== 2. or运算 ===
or运算通常用于二进制特定位上的无条件赋值,例如一个数or 1的结果就是把二进制最末位强行变成1。如果需要把二进制最末位变成0,对这个数or 1之后再减一就可以了,其实际意义就是把这个数强行变成最接近的偶数。
=== 3. xor运算 ===
xor运算通常用于对二进制的特定一位进行取反操作,因为异或可以这样定义:0和1异或0都不变,异或1则取反。
xor运算的逆运算是它本身,也就是说两次异或同一个数最后结果不变,即(a xor b) xor b = a。xor运算可以用于简单的加密,比如我想对我MM说1314520,但怕别人知道,于是双方约定拿我的生日19880516作为密钥。1314520 xor 19880516 = 20665500,我就把20665500告诉MM。MM再次计算20665500 xor 19880516的值,得到1314520,于是她就明白了我的企图。
=== 4. not运算 ===
not运算的定义是把内存中的0和1全部取反。使用not运算时要格外小心,你需要注意整数类型有没有符号。如果not的对象是无符号整数(不能表示负数),那么得到的值就是它与该类型上界的差,因为无符号类型的数是用$0000到$FFFF依次表示的。下面的两个程序(仅语言不同)均返回65435。
=== 5. shl运算 ===
a shl b就表示把a转为二进制后左移b位(在后面添b个0)。例如100的二进制为1100100,而110010000转成十进制是400,那么100 shl 2 = 400。可以看出,a shl b的值实际上就是a乘以2的b次方,因为在二进制数后添一个0就相当于该数乘以2。
通常认为a shl 1比a * 2更快,因为前者是更底层一些的操作。因此程序中乘以2的操作请尽量用左移一位来代替。
定义一些常量可能会用到shl运算。你可以方便地用1 shl 16 - 1来表示65535。很多算法和数据结构要求数据规模必须是2的幂,此时可以用shl来定义Max_N等常量。
=== 6. shr运算 ===
和shl相似,a shr b表示二进制右移b位(去掉末b位),相当于a除以2的b次方(取整)。我们也经常用shr 1来代替div 2,比如二分查找、堆的插入操作等等。想办法用shr代替除法运算可以使程序效率大大提高。最大公约数的二进制算法用除以2操作来代替慢得出奇的mod运算,效率可以提高60%。
位运算的简单应用
有时我们的程序需要一个规模不大的Hash表来记录状态。比如,做数独时我们需要27个Hash表来统计每一行、每一列和每一个小九宫格里已经有哪些数了。此时,我们可以用27个小于2^9的整数进行记录。例如,一个只填了2和5的小九宫格就用数字18表示(二进制为000010010),而某一行的状态为511则表示这一行已经填满。需要改变状态时我们不需要把这个数转成二进制修改后再转回去,而是直接进行位操作。在搜索时,把状态表示成整数可以更好地进行判重等操作。这道题是在搜索中使用位运算加速的经典例子。以后我们会看到更多的例子。
下面列举了一些常见的二进制位的变换操作。
功能 | 示例 | 位运算
----------------------+---------------------------+--------------------
去掉最后一位 | (101101->10110) | x shr 1
在最后加一个0 | (101101->1011010) | x shl 1
在最后加一个1 | (101101->1011011) | x shl 1+1
把最后一位变成1 | (101100->101101) | x or 1
把最后一位变成0 | (101101->101100) | x or 1-1
最后一位取反 | (101101->101100) | x xor 1
把右数第k位变成1 | (101001->101101,k=3) | x or (1 shl (k-1))
把右数第k位变成0 | (101101->101001,k=3) | x and not (1 shl (k-1))
右数第k位取反 | (101001->101101,k=3) | x xor (1 shl (k-1))
取末三位 | (1101101->101) | x and 7
取末k位 | (1101101->1101,k=5) | x and (1 shl k-1)
取右数第k位 | (1101101->1,k=4) | x shr (k-1) and 1
把末k位变成1 | (101001->101111,k=4) | x or (1 shl k-1)
末k位取反 | (101001->100110,k=4) | x xor (1 shl k-1)
把右边连续的1变成0 | (100101111->100100000) | x and (x+1)
把右起第一个0变成1 | (100101111->100111111) | x or (x+1)
把右边连续的0变成1 | (11011000->11011111) | x or (x-1)
取右边连续的1 | (100101111->1111) | (x xor (x+1)) shr 1
去掉右起第一个1的左边 | (100101000->1000) | x and (x xor (x-1))
二进制中的1有奇数个还是偶数个
我们可以用下面的代码来计算一个32位整数的二进制中1的个数的奇偶性,当输入数据的二进制表示里有偶数个数字1时程序输出0,有奇数个则输出1。例如,1314520的二进制101000000111011011000中有9个1,则x=1314520时程序输出1。
var
i,x,c:longint;
begin
readln(x);
c:=0;
for i:=1 to 32 do
begin
c:=c + x and 1;
x:=x shr 1;
end;
writeln( c and 1 );
end.
但这样的效率并不高,位运算的神奇之处还没有体现出来。
同样是判断二进制中1的个数的奇偶性,下面这段代码就强了。你能看出这个代码的原理吗?
var
x:longint;
begin
readln(x);
x:=x xor (x shr 1);
x:=x xor (x shr 2);
x:=x xor (x shr 4);
x:=x xor (x shr 8);
x:=x xor (x shr 16);
writeln(x and 1);
end.
为了说明上面这段代码的原理,我们还是拿1314520出来说事。1314520的二进制为101000000111011011000,第一次异或操作的结果如下:
00000000000101000000111011011000
XOR 0000000000010100000011101101100
---------------------------------------
00000000000111100000100110110100
得到的结果是一个新的二进制数,其中右起第i位上的数表示原数中第i和i+1位上有奇数个1还是偶数个1。比如,最右边那个0表示原数末两位有偶数个1,右起第3位上的1就表示原数的这个位置和前一个位置中有奇数个1。对这个数进行第二次异或的结果如下:
00000000000111100000100110110100
XOR 000000000001111000001001101101
---------------------------------------
00000000000110011000101111011001
结果里的每个1表示原数的该位置及其前面三个位置中共有奇数个1,每个0就表示原数对应的四个位置上共偶数个1。一直做到第五次异或结束后,得到的二进制数的最末位就表示整个32位数里有多少个1,这就是我们最终想要的答案。
计算二进制中的1的个数
同样假设x是一个32位整数。经过下面五次赋值后,x的值就是原数的二进制表示中数字1的个数。比如,初始时x为1314520(网友抓狂:能不能换一个数啊),那么最后x就变成了9,它表示1314520的二进制中有9个1。
代码
x := (x and $55555555) + ((x shr 1) and $55555555);
x := (x and $33333333) + ((x shr 2) and $33333333);
x := (x and $0F0F0F0F) + ((x shr 4) and $0F0F0F0F);
x := (x and $00FF00FF) + ((x shr 8) and $00FF00FF);
x := (x and $0000FFFF) + ((x shr 16) and $0000FFFF);
为了便于解说,我们下面仅说明这个程序是如何对一个8位整数进行处理的。我们拿数字211(我们班某MM的生日)来开刀。211的二进制为11010011。
+---+---+---+---+---+---+---+---+
| 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | <---原数
+---+---+---+---+---+---+---+---+
| 1 0 | 0 1 | 0 0 | 1 0 | <---第一次运算后
+-------+-------+-------+-------+
| 0 0 1 1 | 0 0 1 0 | <---第二次运算后
+---------------+---------------+
| 0 0 0 0 0 1 0 1 | <---第三次运算后,得数为5
+-------------------------------+
整个程序是一个分治的思想。第一次我们把每相邻的两位加起来,得到每两位里1的个数,比如前两位10就表示原数的前两位有2个1。第二次我们继续两两相加,10+01=11,00+10=10,得到的结果是00110010,它表示原数前4位有3个1,末4位有2个1。最后一次我们把0011和0010加起来,得到的就是整个二进制中1的个数。程序中巧妙地使用取位和右移,比如第二行中$33333333的二进制为00110011001100....,用它和x做and运算就相当于以2为单位间隔取数。shr的作用就是让加法运算的相同数位对齐。
二分查找32位整数的前导0个数
代码
int nlz(unsigned x)
{
int n;
if (x == 0) return(32);
n = 1;
if ((x >> 16) == 0) {n = n +16; x = x <<16;}
if ((x >> 24) == 0) {n = n + 8; x = x << 8;}
if ((x >> 28) == 0) {n = n + 4; x = x << 4;}
if ((x >> 30) == 0) {n = n + 2; x = x << 2;}
n = n - (x >> 31);
return n;
}
高低位交换
给出一个小于2^32的正整数。这个数可以用一个32位的二进制数表示(不足32位用0补足)。我们称这个二进制数的前16位为“高位”,后16位为“低位”。将它的高低位交换,我们可以得到一个新的数。试问这个新的数是多少(用十进制表示)。
例如,数1314520用二进制表示为0000 0000 0001 0100 0000 1110 1101 1000(添加了11个前导0补足为32位),其中前16位为高位,即0000 0000 0001 0100;后16位为低位,即0000 1110 1101 1000。将它的高低位进行交换,我们得到了一个新的二进制数0000 1110 1101 1000 0000 0000 0001 0100。它即是十进制的249036820。
当时几乎没有人想到用一句位操作来代替冗长的程序。使用位运算的话两句话就完了。
var n:dword;beginreadln( n );writeln( (n shr 16) or (n shl 16) );end.
而事实上,Pascal有一个系统函数swap直接就可以用。
二进制逆序
下面的程序读入一个32位整数并输出它的二进制倒序后所表示的数。
输入: 1314520 (二进制为00000000000101000000111011011000)
输出: 460335104 (二进制为00011011011100000010100000000000)
代码
var
x:dword;
begin
readln(x);
x := (x and $55555555) shl 1 or (x and $AAAAAAAA) shr 1;
x := (x and $33333333) shl 2 or (x and $CCCCCCCC) shr 2;
x := (x and $0F0F0F0F) shl 4 or (x and $F0F0F0F0) shr 4;
x := (x and $00FF00FF) shl 8 or (x and $FF00FF00) shr 8;
x := (x and $0000FFFF) shl 16 or (x and $FFFF0000) shr 16;
writeln(x);
end.
它的原理和刚才求二进制中1的个数那个例题是大致相同的。程序首先交换每相邻两位上的数,以后把互相交换过的数看成一个整体,继续进行以2位为单位、以4位为单位的左右对换操作。我们再次用8位整数211来演示程序执行过程:
+---+---+---+---+---+---+---+---+
| 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | <---原数
+---+---+---+---+---+---+---+---+
| 1 1 | 1 0 | 0 0 | 1 1 | <---第一次运算后
+-------+-------+-------+-------+
| 1 0 1 1 | 1 1 0 0 | <---第二次运算后
+---------------+---------------+
| 1 1 0 0 1 0 1 1 | <---第三次运算后
+-------------------------------+

浙公网安备 33010602011771号