import tensorflow as tf
# 设置相关底层配置
physical_devices = tf.config.experimental.list_physical_devices('GPU')
assert len(physical_devices) > 0, "Not enough GPU hardware devices available"
tf.config.experimental.set_memory_growth(physical_devices[0], True)
def preprocess(x,y):
x = tf.cast(x,dtype=tf.float32) / 255
y = tf.cast(y,dtype=tf.int32)
return x,y
# ###############数据加载以及处理#############
(x,y),(x_test,y_test) = tf.keras.datasets.cifar100.load_data()
# 将y的1维度去掉
y = tf.squeeze(y,axis=1)
y_test = tf.squeeze(y_test,axis=1)
print('x.shape,y.shape,x_test.shape,y_test.shape:')
print(x.shape,y.shape,x_test.shape,y_test.shape)
train_db = tf.data.Dataset.from_tensor_slices((x,y))
train_db = train_db.shuffle(1000).batch(64)
test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test))
test_db = test_db.shuffle(1000).batch(200)
# 打印看下数据的形状
sample = next(iter(train_db))
print('sample:',sample[0].shape,sample[1].shape
,tf.reduce_min(sample[0]),tf.reduce_max(sample[0]))
if __name__ == '__main__':
# 卷积网络结构
conv_layers = [
# 第一部分(两卷积一池化)
tf.keras.layers.Conv2D(64, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
tf.keras.layers.Conv2D(64, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# 第二部分(两卷积一池化)
tf.keras.layers.Conv2D(128, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
tf.keras.layers.Conv2D(128, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# 第三部分(两卷积一池化)
tf.keras.layers.Conv2D(256, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
tf.keras.layers.Conv2D(256, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# 第四部分(两卷积一池化)
tf.keras.layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
tf.keras.layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# 第五部分(两卷积一池化)
tf.keras.layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
tf.keras.layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
]
# [b,32,32,3] => [b,1,1,512] 卷积层操作
conv_net = tf.keras.Sequential(conv_layers)
conv_net.build(input_shape=[None,32,32,3])
x = tf.random.normal([4,32,32,3])
out = conv_net(x)
print(out.shape)
# 全连接层操作
fc_net = tf.keras.Sequential([
tf.keras.layers.Dense(256,activation=tf.nn.relu),
tf.keras.layers.Dense(128, activation=tf.nn.relu),
tf.keras.layers.Dense(100, activation=None)
])
fc_net.build(input_shape=[None,512])
# 把卷积和全连接层的参数合并 ‘+’可以把两个列表直接合并
variables = conv_net.trainable_variables + fc_net.trainable_variables
# 定义优化器
optimizer = tf.optimizers.Adam(lr=1e-4)
# 训练
for epoch in range(50):
for step,(x,y) in enumerate(train_db):
with tf.GradientTape() as tape:
# [b,32,32,3] => [b,1,1,512]
out = conv_net(x)
# flatten
out = tf.reshape(out,[-1,512])
# [b,512] =>[b,100]
logits = fc_net(out)
#
y_onehot = tf.one_hot(y,depth=100)
loss = tf.losses.categorical_crossentropy(y_onehot,logits,from_logits=True)
loss = tf.reduce_mean(loss)
grads = tape.gradient(loss,variables)
optimizer.apply_gradients(zip(grads,variables))
if step % 100 == 0:
print(epoch,step,'loss:',float(loss))
for x,y in test_db:
out = conv_net(x)
out = tf.reshape(out,[-1,512])
logits = fc_net(out)
prob = tf.nn.softmax(logits,axis=1)
pred = tf.argmax(prob,axis=1)
pred = tf.cast(pred,tf.int32)
correct = tf.cast(tf.equal(pred,y),dtype=tf.int32)
correct = tf.reduce_mean(tf.cast(correct,dtype=tf.float32))
print('acc:',float(correct))