import tensorflow as tf
from tensorflow.keras import optimizers,layers
# 定义数据预处理函数
def preprocess(x,y):
x = tf.cast(x,dtype=tf.float32) / 255 # 将特征数据转化为float32类型,并缩放到0到1之间
y = tf.cast(y,dtype=tf.int32) # 将标记数据转化为int32类型
y = tf.one_hot(y,depth= 10) # 将标记数据转为one_hot编码
return x,y
def get_data():
# 加载手写数字数据
mnist = tf.keras.datasets.mnist
(train_x, train_y), (test_x, test_y) = mnist.load_data()
# 开始预处理数据
# 训练数据
db = tf.data.Dataset.from_tensor_slices((train_x,train_y)) # 将数据特征与标记组合
db = db.map(preprocess) # 根据预处理函数对组合数据进行处理
db = db.shuffle(60000).batch(100) # 将数据按10000行为单位打乱,并以100行为一个整体进行随机梯度下降
# 测试数据
db_test = tf.data.Dataset.from_tensor_slices((test_x,test_y))
db_test = db_test.map(preprocess)
db_test = db_test.shuffle(10000).batch(100)
return db,db_test
# 测试代码
db,db_test = get_data() # 获取训练和测试数据
# 设置超参
iter = 100
learn_rate = 0.01
# 定义模型和优化器
model = tf.keras.Sequential([
layers.Dense(512, activation='relu'),
layers.Dense(256, activation='relu'), # 全连接
layers.Dense(10)
])
optimizer = optimizers.SGD(learning_rate=learn_rate) # 优化器
# 迭代代码
for i in range(iter):
for step,(x,y) in enumerate(db): # 对每个batch样本做梯度计算
# print('x.shape:{},y.shape:{}'.format(x.shape,y.shape))
with tf.GradientTape() as tape:
x = tf.reshape(x,(-1,28*28)) # 将28*28展开为784
out = model(x)
loss = tf.reduce_mean(tf.square(out-y))
grads = tape.gradient(loss,model.trainable_variables) # 求梯度
grads,_ = tf.clip_by_global_norm(grads,15) # 梯度参数进行限幅,防止偏导的nan和无穷大
optimizer.apply_gradients(zip(grads,model.trainable_variables)) # 优化器进行参数优化
if step % 100 == 0:
print('i:{} ,step:{} ,loss:{}'.format(i, step,loss.numpy()))
# 求准确率
acc = tf.equal(tf.argmax(out,axis=1),tf.argmax(y,axis=1))
acc = tf.cast(acc,tf.int8)
acc = tf.reduce_mean(tf.cast(acc,tf.float32))
print('acc:',acc.numpy())
![]()