#归一化数值 防止特征值权值过大 方法:newdata = (olddata - min)/(max - min)
a = np.array([[1,0.1,7],[1.5,0.1,2],[1.6,0.4,3],[1.2,0.4,4],[1.3,0.5,12]])
# a
# [[ 1. 0.1 7. ]
# [ 1.5 0.1 2. ]
# [ 1.6 0.4 3. ]
# [ 1.2 0.4 4. ]
# [ 1.3 0.5 12. ]]
Max = a.max(0)
Min = a.min(0)
# Max:[ 1.6 0.5 12. ],Min:[1. 0.1 2. ]
cha1 = a - Min
# cha1
# [[ 0. 0. 5. ]
# [ 0.5 0. 0. ]
# [ 0.6 0.3 1. ]
# [ 0.2 0.3 2. ]
# [ 0.3 0.4 10. ]]
ranges = Max - Min
result = cha1 / ranges
# result
# [[0. 0. 0.5 ]
# [0.83333333 0. 0. ]
# [1. 0.75 0.1 ]
# [0.33333333 0.75 0.2 ]
# [0.5 1. 1. ]]