玲珑杯 Round #5 Problem E Tetration (枚举 + 欧拉公式)
题目链接 Tetration
题意 给定一个排列 现在可以任意调整这个排列的顺序
求$a_{1}^{a_{2}^{a_{3}^{...^{a_{n}}}}}$对$p$取模的最小值
直接枚举$a$的每一个排列,然后计算取最小值即可。
#include <bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i)
#define MP make_pair
#define fi first
#define se second
typedef long long LL;
const int N = 10;
int n;
int T;
int f[N];
LL a[N], c[N];
LL m;
LL ans;
map <LL, LL> mp;
LL phi(LL n){
if (mp.count(n)) return mp[n];
LL ans = n, z = n;
for (LL i = 2; i * i <= n; ++i){
if (n % i == 0){
ans -= ans / i;
while (n % i == 0) n /= i;
}
}
if (n > 1) ans -= ans / n;
return mp[z] = ans;
}
LL Pow(LL a, LL b, LL mod){
LL ret = 1;
LL fl = a >= mod;
for (; b; b >>= 1){
if (b & 1){
ret *= a;
if (ret >= mod) fl = 1, ret %= mod;
}
a *= a;
if (a >= mod) a %= mod, fl = 1;
}
return ret + fl * mod;
}
LL solve(int l, int r, LL mod){
if (l == r) return c[l];
if (mod == 1) return 1;
return Pow(c[l], solve(l + 1, r, phi(mod)), mod);
}
int main(){
scanf("%d", &T);
while (T--){
scanf("%d%lld", &n, &m);
ans = 1e18;
rep(i, 1, n) scanf("%lld", a + i);
rep(i, 1, n) f[i] = i;
do{
rep(i, 1, n) c[i] = a[f[i]];
ans = min(ans, solve(1, n, m) % m);
}
while (next_permutation(f + 1, f + n + 1));
printf("%lld\n", ans);
}
return 0;
}

浙公网安备 33010602011771号