BZOJ 4034 [HAOI2015]树上操作(树链剖分)
题目链接 BZOJ4034
这道题树链剖分其实就可以了。
单点更新没问题。
相当于更新
[f[x], f[x]]这个区间。
f[x]表示树链剖分之后每个点的新的标号。
区间更新的话类似DFS序,求出所对应的区间。
也就是[f[x], f[x] + size[x] - 1]。
给这个区间加上a即可。
询问的时候有两种方法,一个是直接套模板。
还有一种方法是,因为是查询x到1的权值和,
所以跟着top[x]走就可以了。
第一种方法:
#include <bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i)
#define lson i << 1, L, mid
#define rson i << 1 | 1, mid + 1, R
typedef long long LL;
const int N = 300010;
LL a[N], sum[N << 2], lazy[N << 2], y;
int f[N], fp[N], son[N], deep[N], father[N], sz[N], top[N];
int x, tot, n, m, op;
vector <int> v[N];
void dfs1(int x, int fa, int dep){
deep[x] = dep;
father[x] = fa;
son[x] = 0;
sz[x] = 1;
int ct = (int)v[x].size();
rep(i, 0, ct - 1){
int u = v[x][i];
if (u == fa) continue;
dfs1(u, x, dep + 1);
sz[x] += sz[u];
if (sz[son[x]] < sz[u]) son[x] = u;
}
}
void dfs2(int x, int tp){
top[x] = tp;
f[x] = ++tot;
fp[f[x]] = x;
if (son[x]) dfs2(son[x], tp);
int ct = (int)v[x].size();
rep(i, 0, ct - 1){
int u = v[x][i];
if (u == father[x] || u == son[x]) continue;
dfs2(u, u);
}
}
inline void pushup(int i){
sum[i] = sum[i << 1] + sum[i << 1 | 1];
}
inline void pushdown(int i, int L, int R){
int mid = (L + R) >> 1;
lazy[i << 1] += lazy[i];
sum[i << 1] += lazy[i] * (mid - L + 1);
lazy[i << 1 | 1] += lazy[i];
sum[i << 1 | 1] += lazy[i] * (R - mid);
lazy[i] = 0;
}
void build(int i, int L, int R){
if (L == R){ sum[i] = a[fp[L]]; return; }
int mid = (L + R) >> 1;
build(lson);
build(rson);
pushup(i);
}
void update(int i, int L, int R, int l, int r, LL val){
if (l == L && R == r){
sum[i] += val * (R - L + 1);
lazy[i] += val;
return ;
}
if (lazy[i]) pushdown(i, L, R);
int mid = (L + R) >> 1;
if (r <= mid) update(lson, l, r, val);
else if (l > mid) update(rson, l, r, val);
else{
update(lson, l, mid, val);
update(rson, mid + 1, r, val);
}
pushup(i);
}
LL query_sum(int i, int L, int R, int l, int r){
pushdown(i, L, R);
if (L == l && R == r) return sum[i];
int mid = (L + R) >> 1;
if (r <= mid) return query_sum(lson, l, r);
else if (l > mid) return query_sum(rson, l, r);
else return query_sum(lson, l, mid) + query_sum(rson, mid + 1, r);
}
LL find_sum(int x, int y){
int f1 = top[x], f2 = top[y];
LL ret = 0;
for (; f1 != f2; ){
if (deep[f1] < deep[f2]) swap(f1, f2), swap(x, y);
ret += query_sum(1, 1, n, f[f1], f[x]);
x = father[f1], f1 = top[x];
}
if (x == y) return ret + query_sum(1, 1, n, f[x], f[y]);
if (deep[x] > deep[y]) swap(x, y);
return ret + query_sum(1, 1, n, f[x], f[y]);
}
int main(){
scanf("%d%d", &n, &m);
rep(i, 1, n) scanf("%lld", a + i);
rep(i, 2, n){
int x, y;
scanf("%d%d", &x, &y);
v[x].push_back(y);
v[y].push_back(x);
}
dfs1(1, 0, 0);
dfs2(1, 1);
build(1, 1, n);
while (m--){
scanf("%d", &op);
if (op == 1){
scanf("%d%lld", &x, &y);
update(1, 1, n, f[x], f[x], y);
}
else if (op == 2){
scanf("%d%lld", &x, &y);
update(1, 1, n, f[x], f[x] + sz[x] - 1, y);
}
else{
scanf("%d", &x);
printf("%lld\n", find_sum(x, 1));
}
}
return 0;
}
第二种方法:
#include <bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i)
#define lson i << 1, L, mid
#define rson i << 1 | 1, mid + 1, R
typedef long long LL;
const int N = 300010;
LL a[N], sum[N << 2], lazy[N << 2], y;
int f[N], fp[N], son[N], deep[N], father[N], sz[N], top[N];
int x, tot, n, m, op;
vector <int> v[N];
void dfs1(int x, int fa, int dep){
deep[x] = dep;
father[x] = fa;
son[x] = 0;
sz[x] = 1;
int ct = (int)v[x].size();
rep(i, 0, ct - 1){
int u = v[x][i];
if (u == fa) continue;
dfs1(u, x, dep + 1);
sz[x] += sz[u];
if (sz[son[x]] < sz[u]) son[x] = u;
}
}
void dfs2(int x, int tp){
top[x] = tp;
f[x] = ++tot;
fp[f[x]] = x;
if (son[x]) dfs2(son[x], tp);
int ct = (int)v[x].size();
rep(i, 0, ct - 1){
int u = v[x][i];
if (u == father[x] || u == son[x]) continue;
dfs2(u, u);
}
}
inline void pushup(int i){ sum[i] = sum[i << 1] + sum[i << 1 | 1]; }
inline void pushdown(int i, int L, int R){
sum[i] += lazy[i] * (R - L + 1);
lazy[i << 1] += lazy[i];
lazy[i << 1 | 1] += lazy[i];
lazy[i] = 0;
}
void build(int i, int L, int R){
if (L == R){ sum[i] = a[fp[L]]; return; }
int mid = (L + R) >> 1;
build(lson);
build(rson);
pushup(i);
}
void update(int i, int L, int R, int l, int r, LL val){
if (l == L && R == r){
lazy[i] += val;
return ;
}
int mid = (L + R) >> 1;
if (r <= mid) update(lson, l, r, val);
else if (l > mid) update(rson, l, r, val);
else{
update(lson, l, mid, val);
update(rson, mid + 1, r, val);
}
pushdown(i << 1, L, mid);
pushdown(i << 1 | 1, mid + 1, R);
pushup(i);
}
LL query_sum(int i, int L, int R, int l, int r){
pushdown(i, L, R);
if (L == l && R == r) return sum[i];
int mid = (L + R) >> 1;
if (r <= mid) return query_sum(lson, l, r);
else if (l > mid) return query_sum(rson, l, r);
else return query_sum(lson, l, mid) + query_sum(rson, mid + 1, r);
}
int main(){
scanf("%d%d", &n, &m);
rep(i, 1, n) scanf("%lld", a + i);
rep(i, 2, n){
int x, y;
scanf("%d%d", &x, &y);
v[x].push_back(y);
v[y].push_back(x);
}
dfs1(1, 0, 0);
dfs2(1, 1);
build(1, 1, n);
while (m--){
scanf("%d", &op);
if (op == 1){
scanf("%d%lld", &x, &y);
update(1, 1, n, f[x], f[x], y);
}
else if (op == 2){
scanf("%d%lld", &x, &y);
update(1, 1, n, f[x], f[x] + sz[x] - 1, y);
}
else{
scanf("%d", &x);
LL ans = 0;
for (int i = x; i; i = father[top[i]])
ans += query_sum(1, 1, n, f[top[i]], f[i]);
printf("%lld\n", ans);
}
}
return 0;
}

浙公网安备 33010602011771号