OKR-Periods of Words

题目描述

对于一个由小写字母构成的字符串a,定义它的周期Q 满足Q是a的真前缀且a是Q+Q (两个Q首尾相接组成的字符串)的前缀 (不一定是真前缀)。
例如 ab 是 abab 的一个周期,因为 ab 是 abab 的真前缀,且 abab 是 ab+ab 的前缀。
求给定字符串所有前缀的最大周期长度之和。

输入格式

第一行一个整数 k (1<=k<=10^6) 表示串的长度. 接下来一行表示给出的串.

输出格式

输出一个整数表示它所有前缀的最大周期长度之和.

样例

样例输入

8
babababa

样例输出

24
首先我们需要明确一个问题,找前缀是找什么样的border最长还是最短?
image
设border长度为len,则Q为要求的串减去最后一个len剩下的部分,这样才能保证Q+Q才能完全覆盖原来的字符串
剩下的还要求出原字符串所有有前缀的子串,再求出这些子串最小的border,用ans记录求和就行

#include<bits/stdc++.h>
using namespace std;
#define ll long long

const int maxn=1e6+10;
char s[maxn];
int len;
ll pi[maxn];
ll ans;

void kmp()
{
	for(int i=2,j=0;i<=len;i++)//先求到每个字符的border
	{
		while(j&&s[i]!=s[j+1]) j=pi[j];
		if(s[i]==s[j+1]) j++;
		pi[i]=j;
	}
}

int main()
{
	scanf("%d",&len);
	scanf("%s",s+1);
	kmp();
	for(int i=2;i<=len;i++)//求每个有前缀的子串的最小前缀长度
	{
		int j=i;
		while(pi[j])
		{
			j=pi[j];
		}
		if(pi[i]) pi[i]=j;
		ans+=i-j;//i-j是最大的周期
	}
//	for(int i=1;i<=len;i++)
//	{
//		printf("%d**%d\n",i,pi[i]);
//	}
	printf("%lld",ans);

	return 0;
}
posted @ 2024-05-05 17:21  晨曦ccx  阅读(37)  评论(0)    收藏  举报
浏览器标题切换
浏览器标题切换end