420学习记录
1.https://ui.adsabs.harvard.edu/abs/2015MNRAS.450.4043W/abstract
这篇文章中有介绍温度和柱密度图的做法。
代码和例子在这儿:https://hi-gal-sed-fitter.readthedocs.io/en/latest/
使用下面的方法安装成功:1.下载安装包,解压;2.在解压后的文件夹里打开终端;3.运行pip install astropy_helpers;4.运行
python setup.py install
2.Deriving Luminosity from an SED
https://keflavich.github.io/dust_emissivity/example/Luminosity.html
3.https://pypi.org/project/dust_emissivity/#files
dust_emissivity安装失败,下载安装包后,不知道怎么在本地用pip安装下载的包。
在python中创造安装虚拟环境,有两个工具,venv和virtualenv。
python3 -m venv <DIR> <dir>替换为ENV_DIR
source <DIR>/bin/activate
4.https://wcsaxes.readthedocs.io/en/latest/index.html 要学一学这个包的用法
5.一篇论文的记录:Gas emission and dynamics in the infrared dark cloud G31.23+0.05
坐标银河: 31.23+0.05 FK5: 18:48:08.2031 -1:30:02.635 or 18:48:09.3200 -1:29:30.600 observations was α (J2000) = 18 h 48 m 09 . 32 s , δ (J2000) = − 01 ◦ 29 ′ 30 . 6 ′ molecular line: 13CO (1–0) and C18O (1–0) lines We used the routine XY MAP in CLASS to regrid raw data and then converted them into FITS files. The pixel size of these FITS files was 30 ′′ × 30 ′′ data come from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) http://www.iram.fr/IRAMFR/GILDAS http://irsa.ipac.caltech.edu/data/SPITZER/GLIMPSE http://irsa.ipac.caltech.edu/applications/Herschel http://third.ucllnl.org/cgi-bin/gpscutout (Schuller et al. 2009) http://irsa.ipac.caltech.edu/data/BOLOCAM GPS/ 作图的过程: 1.对分子做光谱图,得到速度成分的数量,和速度区间 2.用该速度区间做通道图,有几个区间做几个通道图,例如本文分为两个区间 3.在通道图中找到云的位置,例如本文有三个clouds。 4.利用set match and find /offset 选出这三个clouds的数据,作出它们的高斯拟合曲线,得到参数 5.有了速度的积分区间,作出积分强度图,这儿可以用同一个波长例如8um作为背景图 6.Multiwavelength images 用到下载的多个波段作为背景图 Setting T dust and N H 2 as free parameters, the SED fitting was performed using the IDL program MPFITFUN 光谱能量拟合用到的程序是IDL https://www.physics.wisc.edu/∼craigm/idl/fitting.html
浙公网安备 33010602011771号