LIF模型
恒定外部电流
\[\frac{\mathrm{d}v}{\mathrm{d}t}=\frac{-(v-V_{rest}+RI)}{\tau}
\begin{cases}
V_{rest}=-70\text{mV}\\
R=10\text{Mohm}\\
\tau=8\text{ms}\\
v_{t_0}=v_0
\end{cases}
\]
求解原函数
\[v(t)=\left[v_{rest}+10I-10Ie^{(t_{0}-t)/8}\right]\text{mV}
\]
单位及初始条件说明
- v的单位为mV
- t对应的单位为ms
- I对应的单位为namp
- 其中 \(v_{0}\) 是某一段函数的初始膜电位,对应为初始时刻 \(t_0\),是某一段方程的初始条件
1.静息时刻
Condition
- \(v_0=-70\text{mV}\quad\text{for}\quad t_0=0\)
- \(I=0\)
Solution
\[v(t)=-70\text{mV}
\]
2.外部恒定刺激
Condition
-
\(v_0=-70\text{mV}\quad\text{for}\quad t_0=5\text{ms}\)
-
\(I=10\text{namp}\)
Solution
\[v(t)=[30-100e^{(5-t)/8}]\text{mV}
\]
3.外部刺激消失,缓慢恢复到静息电位
Condition
- \(v_0\approx30\text{mV}\quad\text{for}\quad t_0=80\text{ms}\)
- \(I=0\)
Solution
\[v(t)=[100e^{(80-t)/8}-70]\text{mV}
\]
代码
I_min = 10 * namp
# create a step current with amplitude = I_min
input_current = input_factory.get_step_current(
t_start=5, t_end=50, unit_time=b2.ms,
amplitude=I_min) # set I_min to your value
# differential equation of Leaky Integrate-and-Fire model
eqs = """
dv/dt = ( -(v-v_rest) + membrane_resistance * input_current(t,i) ) / membrane_time_scale : volt (unless refractory)"""
# LIF neuron using Brian2 library
neuron = b2.NeuronGroup(
1, model=eqs, reset="v=v_reset", method="linear")
neuron.v = v_rest # set initial value
结果

Reference
posted on 2020-08-17 19:16 ctrlplayer 阅读(754) 评论(0) 收藏 举报
浙公网安备 33010602011771号