Mahout协同推荐简单实例
上篇文章介绍了协同过滤的安装与配置,这篇找了几个协同过滤的简单例子,看一下
Mahout给我们提供的强大的协同过滤算法。需要新建一个基于Maven的工程,下面是
pom.xml需要导入的包。
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>mahouttest</groupId>
<artifactId>mahouttest</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>
<name>mahouttest</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.8.1</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.mahout</groupId>
<artifactId>mahout-core</artifactId>
<version>0.8-SNAPSHOT</version>
<type>jar</type>
<scope>compile</scope>
</dependency>
</dependencies>
这里我们导入的是最新的Mahout包,需要在本地的maven库中安装好。
首先我们需要准备好测试的数据,我们就用《Mahout in action》中的例子:
1,101,5 1,102,3 1,103,2.5 2,101,2 2,102,2.5 2,103,5 2,104,2 3,101,2.5 3,104,4 3,105,4.5 3,107,5 4,101,5 4,103,3 4,104,4.5 4,106,4 5,101,4 5,102,3 5,103,2 5,104,4 5,105,3.5 5,106,4
具体对应的关系图如下:

下面我们用Mahout中三种不同的推荐代码来执行以下刚才给出的数据,看看Mahout中的推荐接口是
如何使用的。
1. 基于用户的协同推荐的代码:
DataModel model =new FileDataModel(new File("data/intro.csv"));
UserSimilarity similarity =new PearsonCorrelationSimilarity(model);
UserNeighborhood neighborhood =new NearestNUserNeighborhood(2,similarity,model);
Recommender recommender= new GenericUserBasedRecommender(model,neighborhood,similarity);
List<RecommendedItem> recommendations =recommender.recommend(1, 1);
for(RecommendedItem recommendation :recommendations){
System.out.println(recommendation);
}
执行后的结果是:RecommendedItem[item:104, value:4.257081]
2. 基于Item的协同过滤的代码:
DataModel model =new FileDataModel(new File("data/intro.csv"));
ItemSimilarity similarity =new PearsonCorrelationSimilarity(model);
Recommender recommender= new GenericItemBasedRecommender(model,similarity);
List<RecommendedItem> recommendations =recommender.recommend(1, 1);
for(RecommendedItem recommendation :recommendations){
System.out.println(recommendation);
}
执行后的结果是:RecommendedItem[item:104, value:5.0]
3. SlopeOne推荐算法
DataModel model =new FileDataModel(new File("data/intro.csv"));
Recommender recommender= new SlopeOneRecommender(model);
List<RecommendedItem> recommendations =recommender.recommend(1, 1);
for(RecommendedItem recommendation :recommendations){
System.out.println(recommendation);
}
执行结果是:RecommendedItem[item:105, value:5.75]

浙公网安备 33010602011771号