摘要: 时间:2023 学校:慕尼黑大学 创新点: 1.据我们所知,这是第一个试图在TKGF背景下研究零射击关系学习的工作。 2.我们设计了一种基于llm的方法zrLLM,并设法在零射击关系推理中增强各种基于嵌入的TKGF模型。 3.实验结果表明,zrLLM有助于大大提高所有考虑的TKGF模型对包含未见零射 阅读全文
posted @ 2024-01-09 09:34 尘世铅华 阅读(216) 评论(1) 推荐(0)
摘要: 会议:ACL,时间:2023,学校:北京航空航天大学,多伦多大学 关键词:基于张量分解;频率注意力;正则化 摘要: 之前基于张量分解的TKGC模型存在仅独立考虑一种关系与一个时间戳的组合,忽略了嵌入的全局性质的问题。 本文的方法:一种频率注意力(FA)模型来捕获一个关系与整个时间戳之间的全局时间依赖 阅读全文
posted @ 2023-11-27 13:07 尘世铅华 阅读(458) 评论(0) 推荐(0)
摘要: 会议:SIGIR,时间:2023,学校:国防科技大学 摘要: 之前模型存在的问题:未能利用快照内结构信息的关系之间的语义相关性与快照间时间交互沿时间轴的周期性时间模式。 本文的工作:提出了一种新的推理模型(RPC);它通过两个新的通信单元,即关系通信单元(RCU)和周期通信单元(PCU),充分挖掘关 阅读全文
posted @ 2023-11-23 11:18 尘世铅华 阅读(628) 评论(1) 推荐(0)
摘要: 会议:WWW,时间:2023,学校:东北大学计算机与通信工程学院 摘要: 目前TKGC模型存在的问题:只考虑实体或关系的结构信息,而忽略了整个TKG的结构信息。此外,它们中的大多数通常将时间戳视为一般特征,不能利用时间戳的潜在时间序列信息。 本文的方法:一种基于自注意机制和历时嵌入技术的分层自注意嵌 阅读全文
posted @ 2023-11-22 12:37 尘世铅华 阅读(551) 评论(5) 推荐(0)
摘要: 会议:SIGIR,时间:2023,学校:苏州大学计算机科学与技术学院,澳大利亚昆士兰布里斯班大学信息技术与电气工程学院,Griffith大学金海岸信息通信技术学院 摘要: 原因:现在的时序知识图谱推理方法无法生成显式推理路径,缺乏可解释性。 方法迁移:由于强化学习 (RL) 用于传统知识图谱上的多跳 阅读全文
posted @ 2023-11-21 13:10 尘世铅华 阅读(612) 评论(1) 推荐(0)
摘要: 会议:IJCAI,时间:2023,学校:1 中国科学院计算机网络信息中心,北京 2中国科学院大学,北京 3 澳门大学智慧城市物联网国家重点实验室,澳门 4 香港科技大学(广州),广州 5 佛罗里达大学计算机科学系,奥兰多 摘要: 提出一种新的具有TKG关联特征的体系结构建模方法,即自适应路径-记忆网 阅读全文
posted @ 2023-11-20 13:25 尘世铅华 阅读(628) 评论(0) 推荐(0)
摘要: 会议:AAAI,时间:2023,学校:上海交通大学 摘要: 大多数时序知识图谱的推理方法高度依赖于事件的递归或周期性,这给推断与缺乏历史交互的实体相关的未来事件带来了挑战。本文提出一种新的基于历史对比学习训练框架的对比事件网络(CENET)的新事件预测模型。 1.CENET 学习历史和非历史依赖来区 阅读全文
posted @ 2023-11-20 13:03 尘世铅华 阅读(502) 评论(0) 推荐(0)
摘要: 会议:AAAI,时间:2023,学校:北京航空航天大学 文中谓词可以视为关系。 以往的TKG补全(TKGC)方法不能同时表示事件的时效性和因果关系。为了应对这些问题,作者提出了一个逻辑和尝试引导嵌入模型(LCGE ),从常识的角度共同学习涉及事件的及时性和因果关系的时间敏感表示,以及事件的时间无关表 阅读全文
posted @ 2023-11-20 12:25 尘世铅华 阅读(574) 评论(1) 推荐(0)
点击右上角即可分享
微信分享提示