背包问题2
2.2 版本2 一维
将状态f[i][j]优化到一维f[j],实际上只需要做一个等价变形。
为什么可以这样变形呢?我们定义的状态f[i][j]可以求得任意合法的i与j最优解,但题目只需要求得最终状态f[n][m],因此我们只需要一维的空间来更新状态。
(1)状态f[j]定义:NN 件物品,背包容量j下的最优解。
(2)注意枚举背包容量j必须从m开始。
(3)为什么一维情况下枚举背包容量需要逆序?在二维情况下,状态f[i][j]是由上一轮i - 1的状态得来的,f[i][j]与f[i - 1][j]是独立的。而优化到一维后,如果我们还是正序,则有f[较小体积]更新到f[较大体积],则有可能本应该用第i-1轮的状态却用的是第i轮的状态。
(4)例如,一维状态第i轮对体积为 33 的物品进行决策,则f[7]由f[4]更新而来,这里的f[4]正确应该是f[i - 1][4],但从小到大枚举j这里的f[4]在第i轮计算却变成了f[i][4]。当逆序枚举背包容量j时,我们求f[7]同样由f[4]更新,但由于是逆序,这里的f[4]还没有在第i轮计算,所以此时实际计算的f[4]仍然是f[i - 1][4]。
(5)简单来说,一维情况正序更新状态f[j]需要用到前面计算的状态已经被「污染」,逆序则不会有这样的问题。
状态转移方程为:f[j] = max(f[j], f[j - v[i]] + w[i] 。
for(int i = 1; i <= n; i++)
for(int j = m; j >= 0; j--)
{
if(j < v[i])
f[i][j] = f[i - 1][j]; // 优化前
f[j] = f[j]; // 优化后,该行自动成立,可省略。
else
f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]); // 优化前
f[j] = max(f[j], f[j - v[i]] + w[i]); // 优化后
}
实际上,只有当枚举的背包容量 >= v[i] 时才会更新状态,因此我们可以修改循环终止条件进一步优化。
for(int i = 1; i <= n; i++)
{
for(int j = m; j >= v[i]; j--)
f[j] = max(f[j], f[j - v[i]] + w[i]);
}
关于状态f[j]的补充说明
二维下的状态定义f[i][j]是前 ii 件物品,背包容量 jj 下的最大价值。一维下,少了前 ii 件物品这个维度,我们的代码中决策到第 ii 件物品(循环到第i轮),f[j]就是前i轮已经决策的物品且背包容量 jj 下的最大价值。
因此当执行完循环结构后,由于已经决策了所有物品,f[j]就是所有物品背包容量 jj 下的最大价值。即一维f[j]等价于二维f[n][j]。
2.3 版本3 优化输入
我们注意到在处理数据时,我们是一个物品一个物品,一个一个体积的枚举。
因此我们可以不必开两个数组记录体积和价值,而是边输入边处理。
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1005;
int f[MAXN]; //
int main()
{
int n, m;
cin >> n >> m;
for(int i = 1; i <= n; i++) {
int v, w;
cin >> v >> w; // 边输入边处理
for(int j = m; j >= v; j--)
f[j] = max(f[j], f[j - v] + w);
}
cout << f[m] << endl;
return 0;
}
作者:深蓝
链接:https://www.acwing.com/solution/content/1374/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。