背包问题
题目:
有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 v[i],价值是 w[i]。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤10000
0<vi,wi≤10000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8
2.1 版本1 二维
(1)状态f[i][j]定义:前 ii个物品,背包容量 j 下的最优解(最大价值):
当前的状态依赖于之前的状态,可以理解为从初始状态f[0][0] = 0开始决策,有 N 件物品,则需要 N 次决 策,每一次对第 i 件物品的决策,状态f[i][j]不断由之前的状态更新而来。
(2)当前背包容量不够(j < v[i]),没得选,因此前 ii 个物品最优解即为前 i−1个物品最优解:
对应代码:f[i][j] = f[i - 1][j]。
(3)当前背包容量够,可以选,因此需要决策选与不选第 ii 个物品:
选:f[i][j] = f[i - 1][j - v[i]] + w[i]。
不选:f[i][j] = f[i - 1][j] 。
我们的决策是如何取到最大价值,因此以上两种情况取 max() 。
代码如下:
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1005;
int v[MAXN]; // 体积
int w[MAXN]; // 价值
int f[MAXN][MAXN]; // f[i][j], j体积下前i个物品的最大价值
int main()
{
int n, m;
cin >> n >> m;
for(int i = 1; i <= n; i++) cin >> v[i] >> w[i];
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
{
// 当前背包容量装不进第i个物品,则价值等于前i-1个物品
if(j < v[i]) f[i][j] = f[i - 1][j];
// 能装,需进行决策是否选择第i个物品
else f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);
}
cout << f[n][m] << endl;
return 0;
}