07 python元类编程
property动态属性
根据生日获取年龄案例
@property 把函数编程一个属性,获取值
@类属性函数名.setter 设置一个属性
使用property属性可以获取一个值加入自己的逻辑
from datetime import date, datetime
class User:
def __init__(self, name, birthday):
self.name = name
self.birthday = birthday
self._age = 0
@property
def age(self):
return datetime.now().year - self.birthday.year
@age.setter
def age(self, value):
self._age = value
if __name__ == "__main__":
user = User("bobby", date(year=1987, month=1, day=1))
user.age = 30
print (user._age)
print(user.age)
输出结果如下

__getattr__、__getattribute__魔法函数
__getattr__ 在查找不到属性的时候,python就会调用这个魔法函数,可避免出现报错信息
from datetime import date
class User:
def __init__(self,info={}):
self.info = info
def __getattr__(self, item):
return self.info[item]
if __name__ == "__main__":
user = User(info={"company_name":"imooc", "name":"bobby"})
print(user.name)
打印结果如下

__getattribute__ 对象只要调用属性,无论能否找到这个属性,都会先调用这个魔法函数,比__getattr__的优先级高
from datetime import date
class User:
def __init__(self,info={}):
self.info = info
# def __getattr__(self, item):
# return self.info[item]
def __getattribute__(self, item):
return "bobby"
if __name__ == "__main__":
user = User(info={"company_name":"imooc", "name":"bobby"})
print(user.name)
print(user.company_name)
打印结果如下

属性描述符和属性查找过程
在一个类中实现__get__,__set__,__delete__三个之中的任一个方法,那我们就成为这个类为属性描述符
案例:验证属性类型,如果类型正确,保存起来;否则,报自定义错误信息
使用属性描述符后赋值会把值给属性描述符对象,取值也从属性描述符中获取
import numbers
class IntField: # 整形的属性描述符
# 数据描述符可按照自定义的逻辑来检查对象
"""
instance 在这里指的是 user对象
"""
def __get__(self, instance, owner):
return self.value
def __set__(self, instance, value):
if not isinstance(value, numbers.Integral):
raise ValueError("int value need")
if value < 0:
raise ValueError("positive value need")
self.value = value
def __delete__(self, instance):
pass
class User:
age = IntField() # 这里的age是一个属性描述符的对象
if __name__ == "__main__":
user = User()
user.age = 30 # 调用上面的__set__函数 ,把值保存在 InField.value= value
print(user.age) # 调用上面的__get__函数 ,从IntField中取值
输出结果如下 (如果不是整形会报错)

数据描述符
class IntField:
#数据描述符
def __get__(self, instance, owner):
return self.value
def __set__(self, instance, value):
if not isinstance(value, numbers.Integral):
raise ValueError("int value need")
if value < 0:
raise ValueError("positive value need")
self.value = value
def __delete__(self, instance):
pass
非数据描述符
class NonDataIntField:
#非数据属性描述符
def __get__(self, instance, owner):
return self.value
对象查找一个属性的顺序
user = User(), 那么user.age 顺序如下:
(1)如果“age”是出现在User或其基类的__dict__中, 且age是data descriptor, 那么调用其__get__方法, 否则
(2)如果“age”出现在user的__dict__中, 那么直接返回 obj.__dict__[‘age’], 否则
(3)如果“age”出现在User或其基类的__dict__中
(3.1)如果age是non-data descriptor,那么调用其__get__方法, 否则
(3.2)返回 __dict__[‘age’]
(4)如果User有__getattr__方法,调用__getattr__方法,否则
(5)抛出AttributeError
__new__和__init__的区别
__new__允许在生成类的对象之前添加逻辑,它传进来的参数cls表示类本身,可自定义类的生成过程,返回一个对象
__init__传进来的参数self表示类的对象本身,是用来完善对象的初始化
调用__new__函数生成对象之后,并且__new__方法中要返回对象,才会调用__init__函数
利用__new__生成一个单例
class User:
_instance = False
def __new__(cls, *args, **kwargs):
if not cls._instance:
cls._instance = super().__new__(cls)
return cls._instance
def __init__(self, name):
self.name = name
if __name__ == "__main__":
user1 = User(name="bobby1")
user2 = User(name="bobby2")
print(id(user1),id(user2))
打印结果如下

自定义元类
type也可以动态创建类,type('类名',(继承的类),{属性和方法})
def say(self):
return "i am user"
class BaseClass:
def answer(self):
return "i am baseclass"
USER = type("User", (BaseClass,), {"name": "jack", "age": "14", "say": say})
my_obj = USER()
print(type(my_obj))
print(my_obj.age)
print(my_obj.say())
print(my_obj.answer())
输出结果如下

什么是元类?
元类是创建类的类,比如type,常见的用法是定义一个类来继承type,那么这个新定义的类就是元类python中类的实例化过程
首先找自定义的metaclass, 通过metaclass来创建类对象,如果没有metaclass, 则会使用type来创建类对象
class MetaClass(type):
def __new__(cls, *args, **kwargs):
return super().__new__(cls, *args, **kwargs)
class User(metaclass=MetaClass):
def __init__(self, name):
self.name = name
def __str__(self):
return "user"
if __name__ == "__main__":
my_obj = User(name="jack")
print(my_obj)
调试结果如下

通过元类实现orm
使用元类可以实现类型的检查一些值的设定
用元类模仿django的orm
# 需求
import numbers
class Field:
pass
class IntField(Field):
# 数据描述符
def __init__(self, db_column, min_value=None, max_value=None):
self._value = None
self.min_value = min_value
self.max_value = max_value
self.db_column = db_column
if min_value is not None:
if not isinstance(min_value, numbers.Integral):
raise ValueError("min_value must be int")
elif min_value < 0:
raise ValueError("min_value must be positive int")
if max_value is not None:
if not isinstance(max_value, numbers.Integral):
raise ValueError("max_value must be int")
elif max_value < 0:
raise ValueError("max_value must be positive int")
if min_value is not None and max_value is not None:
if min_value > max_value:
raise ValueError("min_value must be smaller than max_value")
def __get__(self, instance, owner):
return self._value
def __set__(self, instance, value):
if not isinstance(value, numbers.Integral):
raise ValueError("int value need")
if value < self.min_value or value > self.max_value:
raise ValueError("value must between min_value and max_value")
self._value = value
class CharField(Field):
def __init__(self, db_column, max_length=None):
self._value = None
self.db_column = db_column
if max_length is None:
raise ValueError("you must spcify max_lenth for charfiled")
self.max_length = max_length
def __get__(self, instance, owner):
return self._value
def __set__(self, instance, value):
if not isinstance(value, str):
raise ValueError("string value need")
if len(value) > self.max_length:
raise ValueError("value len excess len of max_length")
self._value = value
class ModelMetaClass(type):
def __new__(cls, name, bases, attrs, **kwargs):
if name == "BaseModel":
return super().__new__(cls, name, bases, attrs, **kwargs)
fields = {}
for key, value in attrs.items():
if isinstance(value, Field):
fields[key] = value
attrs_meta = attrs.get("Meta", None)
_meta = {}
db_table = name.lower()
if attrs_meta is not None:
table = getattr(attrs_meta, "db_table", None)
if table is not None:
db_table = table
_meta["db_table"] = db_table
attrs["_meta"] = _meta
attrs["fields"] = fields
del attrs["Meta"]
return super().__new__(cls, name, bases, attrs, **kwargs)
class BaseModel(metaclass=ModelMetaClass):
def __init__(self, *args, **kwargs):
for key, value in kwargs.items():
setattr(self, key, value)
return super().__init__()
def save(self):
fields = []
values = []
for key, value in self.fields.items():
db_column = value.db_column
if db_column is None:
db_column = key.lower()
fields.append(db_column)
value = getattr(self, key)
values.append(str(value))
sql = "insert {db_table}({fields}) value({values})".format(db_table=self._meta["db_table"],
fields=",".join(fields), values=",".join(values))
pass
class User(BaseModel):
name = CharField(db_column="name", max_length=10)
age = IntField(db_column="age", min_value=1, max_value=100)
class Meta:
db_table = "user"
if __name__ == "__main__":
user = User(name="bobby", age=28)
# user.name = "bobby"
# user.age = 28
user.save()
调试结果如下


浙公网安备 33010602011771号