歧化砍腿反应

∑ i ( p i ) ( q i ) ( n + i p + q ) = ( n q ) ( n p ) \sum_{i}\binom{p}{i}\binom{q}{i}\binom{n+i}{p+q}=\binom{n}{q}\binom{n}{p} i(ip)(iq)(p+qn+i)=(qn)(pn)

∑ i ( p i ) ( q i ) ∑ j ( n j ) ( i p + q − j ) = ∑ i ( q i ) ∑ j ( n j ) ( i p + q − j ) ( p i ) = ∑ i ( q i ) ∑ j ( n j ) ( p p + q − j ) ( j − q i + j − p − q ) = ∑ j ( n j ) ( p p + q − j ) ∑ i ( q i ) ( j − q i + j − p − q ) = ∑ j ( n j ) ( p p + q − j ) ∑ i ( q i ) ( j − q p − i ) = ∑ j ( n j ) ( p p + q − j ) ( j p ) = ∑ j ( n p ) ( n − p j − p ) ( p p + q − j ) = ( n q ) ∑ j ( n − p j − p ) ( p p + q − j ) = ( n q ) ( n q ) \sum_{i}\binom{p}{i}\binom{q}{i}\sum_{j}\binom{n}{j}\binom{i}{p+q-j} \\ =\sum_{i}\binom{q}{i}\sum_{j}\binom{n}{j}\binom{i}{p+q-j}\binom{p}{i} \\ =\sum_{i}\binom{q}{i}\sum_{j}\binom{n}{j}\binom{p}{p+q-j}\binom{j-q}{i+j-p-q} \\ =\sum_{j}\binom{n}{j}\binom{p}{p+q-j}\sum_{i}\binom{q}{i}\binom{j-q}{i+j-p-q} \\ =\sum_{j}\binom{n}{j}\binom{p}{p+q-j}\sum_{i}\binom{q}{i}\binom{j-q}{p-i}\\ =\sum_{j}\binom{n}{j}\binom{p}{p+q-j}\binom{j}{p}\\ =\sum_{j}\binom{n}{p}\binom{n-p}{j-p}\binom{p}{p+q-j}\\ =\binom{n}{q}\sum_{j}\binom{n-p}{j-p}\binom{p}{p+q-j}\\ =\binom{n}{q}\binom{n}{q}\\ i(ip)(iq)j(jn)(p+qji)=i(iq)j(jn)(p+qji)(ip)=i(iq)j(jn)(p+qjp)(i+jpqjq)=j(jn)(p+qjp)i(iq)(i+jpqjq)=j(jn)(p+qjp)i(iq)(pijq)=j(jn)(p+qjp)(pj)=j(pn)(jpnp)(p+qjp)=(qn)j(jpnp)(p+qjp)=(qn)(qn)

瞎带 p,q 。

posted @ 2022-03-05 14:13  仰望星空的蚂蚁  阅读(13)  评论(0)    收藏  举报  来源