抽象代数(Abstract Algebra)-群论
太抽象了
群(Group)
定义
称集合\(G\)配一个二元运算\(\times\)为群,当且仅当其满足
封闭律:\(\forall a,b \in G, a \times b \in G\)
结合律:\((a \times b) \times c = a \times (b \times c)\)
单位元:\(\exist e \in G, \forall a \in G(e \times a = a \times e = a)\)
逆元:\(\forall a \in G, \exist b \in G(a\times b = b \times a = e)\)
我们称一个群\(G\)为阿贝尔群(交换群),如果\(\forall a, b \in G(a \times b = b \times a)\)
群的阶:群中元素的个数,记作\(|G|\)
元素的阶:满足\(g^n = e\)的最小正整数,记作ord(\(g\))
群论
子群(Subgroup):\(H \sube G\)且\((H, \times)\)也构成群
陪集(Coset):假设\(g\)是\(G\)中元素,\(H\)是\(G\)的子群
称
\(gH = \{gh : h \in H \}\),为\(H\)的左陪集
\(Hg = \{hg : h \in H \}\),为\(H\)的右陪集
如果\(H\)是阿贝尔群,则左陪集等于右陪集,简称陪集
拉格朗日定理:
群\(G\)的子群\(H\)的阶整除\(G\)的阶,即\(|H| \,\, | \,\, |G|\)
正规子群(Normal Subgroup)
左右陪集相等的子群
商群(Quotient Group)
\(G / H = \{gH : g \in G\}\),运算为\((aH)(bH) = (ab)H\)
群同态(Homomorphism)
映射\(\phi : G \rarr H\),满足\(\phi(ab) = \phi(a)\phi(b)\)

浙公网安备 33010602011771号