LCIS 滚动数组 + O (N^2)
前面介绍了LCIS的两种不同时间复杂度的解法,但是空间复杂度同样都是O(N * N),对于一些题目会存在空间超限的可能性,因此可以利用滚动数组对空间进行优化。
如果不知道LCIS的两种解法 --> O(N * N) --> O(N ^ 3)
观察下面的状态转移方程的代码:这其实是O(N ^ 2)的解法的代码
for (int i = 1; i <= n; i++){
int val = 0;
if(b[0] < a[i])val = dp[i - 1][0];
for (int j = 1; j <= n; j++){
if(a[i] == b[j])dp[i][j] = val + 1;
else dp[i][j] = dp[i - 1][j];
if(b[j] < a[i])val = max(val, dp[i - 1][j]);
}
}
我们可以看出,状态转移的过程中,只用到了上一层(dp[ i - 1] [ j ]的状态),因此可以利用滚动数组对空间进行优化,用同一个数组接连保存后继的每一个状态,后面的覆盖前面的即可
int val = 0;
if(b[0] < a[i])val = dp[1][0];
for (int j = 1; j <= n; j++){
if(a[i] == b[j])dp[2][j] = val + 1;
else dp[i][j] = dp[1][j];
if(b[j] < a[i])val = max(val, dp[1][j]);
}
for (int j = 1; j <= n; j++){
dp[1][j] = dp[2][j];
}
完整代码
#include <bits/stdc++.h>
using namespace std;
const int N = 3010;
int a[N], b[N], dp[N][N], n;
template <class T>
bool read(T & a){
a = 0;
int flag = 0;
char ch;
if((ch = getchar()) == '-'){
flag = 1;
}
else if(ch >= '0' && ch <= '9'){
a = a * 10 + ch - '0';
}
while ((ch = getchar()) >= '0' && ch <= '9'){
a = a * 10 + ch - '0';
}
if(flag)a = -a;
return true;
}
template <class T, class ... R>
bool read(T & a, R & ... b){
if(!read(a))return 0;
read(b...);
}
template <class T>
bool out(T a){
if(a < 0)putchar('-');
if(a >= 10)out(a / 10);
putchar(a % 10 + '0');
return true;
}
template <class T, class ... R>
bool out(T a, R ... b){
if(!out(a))return 0;
out(b...);
}
int main()
{
read(n);
for (int i = 1; i <= n; i++)read(a[i]);
for (int i = 1; i <= n; i++)read(b[i]);
for (int i = 1; i <= n; i++){
int val = 0;
// if(b[0] < a[i])val = dp[i - 1][0];
if(b[0] < a[i])val = dp[1][0];
// for (int j = 1; j <= n; j++){
// if(a[i] == b[j])dp[i][j] = val + 1;
// else dp[i][j] = dp[i - 1][j];
// if(b[j] < a[i])val = max(val, dp[i - 1][j]);
// }
for (int j = 1; j <= n; j++){
if(a[i] == b[j])dp[2][j] = val + 1;
else dp[i][j] = dp[1][j];
if(b[j] < a[i])val = max(val, dp[1][j]);
}
for (int j = 1; j <= n; j++){
dp[1][j] = dp[2][j];
}
}
int res = 0;
// for (int i = 1; i <= n; i++)res = max(res, dp[n][i]);
for (int i = 1; i <= n; i++)res = max(res, dp[2][i]);
printf("%d\n", res);
return 0;
}
本文来自博客园,作者:correct,转载请注明原文链接:https://www.cnblogs.com/correct/p/12862027.html

浙公网安备 33010602011771号